∫√(4-x^2)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 14:44:12

∫√(4-x^2)dx
∫√(4-x^2)dx

∫√(4-x^2)dx
解答这个积分的困难在于有根式√(4-x^2),但是我们可以利用三角公式sin²t+cos²t=1来化去根式.设x=2sint,-π/2<t<π/2,那么√(4-x^2)=2cost,dx=2costdt,于是根式化成了三角式
所求积分化为∫ √(4-x^2)
=∫ 2cost·2cost dt
=4∫ cos²tdt=4∫(1+cos2t)/2 dt
=2∫ (∫ dt+∫ cos2t dt)
=2∫ dt+∫ cos2t d(2t)
=t+sin2t+c
由于x=2sint,t=arcsin(x/2)
cost=√(1-sin²t)=√[1-(x/2)²]=[√(4-x²)]/2
∫√(4-x^2)dx =2arcsin(x/2)+1/2 ·x√(4-x²)+c
敲了半天,这类题做多了最好是记住,以后不少题是建立在这些的基础上,如果记不住,能推理的很熟练也可以.

=2arcsin(x/2)+1/2*x*√(4-x^2)+C(C为任意常数)