设f(x)属于C【a,b】,x1,x2,…,xn属于【a,b】(n大于2),t1+t2+…+tn=1(ti大于0,i=1,…,n).证明至少存在一点ξ属于【a,b】,使f(ξ)=t1f(x1)+t2f(x2)+…+tnf(xn).
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 18:09:35
设f(x)属于C【a,b】,x1,x2,…,xn属于【a,b】(n大于2),t1+t2+…+tn=1(ti大于0,i=1,…,n).证明至少存在一点ξ属于【a,b】,使f(ξ)=t1f(x1)+t2f(x2)+…+tnf(xn).
设f(x)属于C【a,b】,x1,x2,…,xn属于【a,b】(n大于2),t1+t2+…+tn=1(ti大于0,i=1,…,n).证明至少存在一点ξ属于【a,b】,使f(ξ)=t1f(x1)+t2f(x2)+…+tnf(xn).
设f(x)属于C【a,b】,x1,x2,…,xn属于【a,b】(n大于2),t1+t2+…+tn=1(ti大于0,i=1,…,n).证明至少存在一点ξ属于【a,b】,使f(ξ)=t1f(x1)+t2f(x2)+…+tnf(xn).
有些细节也没想清楚,不过大概就是,x1,x2,…,xn全相等时显然成立,不相等时可以找出f(xi)中的最大最小,然后通过t1(f(x)-f(x1))+t2(f(x)-f(x2))+...+tn(f(x)-f(xn))这个关于x的函数在f(x)取最大最小时分别为正和负来通过连续性判断f(x)等于零的情况的存在.
这个函数就是通过把要证结论左边的f(ξ)*1展成f(ξ)*(t1+...tn)并和右边合并之后得到的.这也是这类问题的思路,就是把等式转化为一个函数式.
至于没有讨论到的细节还需要在完善.但是思路就是这样的.
高数题:1 设f(x)在[a,b]内连续 x1,x2属于(a,b),x1
设(a,b)(c,d)都是函数f(x)的单调区间,且x1属于(a,b)x2属于(c,d),x1小于x2,则f(x1)与f(x2)的关系是什么大还是小,还是无法确定为什么
设(a,b)(c,d)都是函数f(x)的单调 增区间.且x1属于(a,b) x2属于(c,d),x1小于x2,则f(x1)与f(x2)的大小关系设(a,b)(c,d)都是函数f(x)的单调 增区间 且x1属于(a,b) x2属于(c,d),x1小于x2,则f(x1)与f(x2)的关系是?等于?
设f(x)在[a,b]上连续,且恒为正,证明:对于任意x1,x2属于(a,b)(x1<x2)必存在一点ξ属于[x1,x2]使得f(ξ)=根号下f(x1)f(x2)
已知实数a,b,c属于R,函数f(x)=ax^3+bx^2+cx满足f(1)=0,设f(x)的导函数为f’(x),满足f'(0)f'(1)>0,设a为常数,且a>0.已知函数f(x)的两个极值点为X1,X2,A(X1,f(X1)),B(X2,f(X2)),求证:直线AB的斜率K属
已知二次函数f(x)=ax^2+bx+c (1)若a>b>c,且f(1)=0,证明f(x)必有两个零点.(2)设x1,x2∈R,且f(x1)≠f(x2),若方程f(x)=½[f(x1)+f(x2)]有两个不等实根,证明一个实根属于区间(x1,x2)最好顺便讲一下高
设f x 是R上的偶函数,且在(0,正无穷)上是减函数.若x1<0,且x1+x2>0,则( )A.f(-x1)>f(-x2) B.f(-x1)=f(-x2) C.f(-x1)<f(-x2) D.f(-x1)与f(-x2)大小不定求详解……
设函数f(x)=xsinx,x∈[-π/2,π/2],若f(x1)>f(x2)则下列不等式一定成立的是A.x1+x2>0 B.x1^2>x2^2 C.x1>x2 D.x1^2
设二次函数f(x)=ax²+bx+c(a≠0),若f(x1)=f(x2)(x1≠x2),则f(x1+x2)等于 (A)-b/2a(B)-b/a(C)c(D)4a
设f(x)属于C【a,b】,x1,x2,…,xn属于【a,b】(n大于2),t1+t2+…+tn=1(ti大于0,i=1,…,n).证明至少存在一点ξ属于【a,b】,使f(ξ)=t1f(x1)+t2f(x2)+…+tnf(xn).
已知函数f(x)=-x^2-x^4-x^6,x1,x2,x3都属于R且x1+x2小于0,x.已知函数f(x)=-x^2-x^4-x^6,x1,x2,x3都属于R且x1+x2小于0,x2+x3小于0,x1+x3小于0,则f(x1)+f(x2)+f(x3)的值.A 一点小于0B 等于0C 一定大于0D 正负都有
已知二次函数份f(x)=ax^2+bx+c(1) :对任意x1,x2属于R 且x1<x2,f(x1)≠f(x2),试证明存在x0属于(x1,x2),使f(x0)=1/2[f(x1)+f(x2)]成立(2):是否存在a,b,c属于R,使f(x)同时满足以下条件
设二次函数f(x)=ax^2+bx+c(a≠0),若f(x1)=f(x2)(x1≠x2),则f(x1+x2)等于A.-b/2aB.-b/aC.cD.(4ac-b^2)/4a
设二次函数f(x)=ax2+bx+c(a不等于0) 若f(x1)=f(x2)且x1不等于x2,则f(x1+x2)= A:c B:4ac-b2/4a
Y=X-sinX,且x1和x2属于[-pi/2,pi/2], f(x1)+f(x2)>0 a.x1>x2 b.x10 d.x1+x2
设函数f(x)=x^2+bx+c 方程f(x)=2x的两个实根x1,x2满足x2-x1>2设函数f(x)=x^2+bx+c(b,c为常数),方程f(x)=2x的两个实根x1,x2满足x2-x1>2.(1)求证:b^2>4(b+c);(2)设t
已知二次函数f(x)=ax^2+x 若对X1、X2属于R,恒有2f(x1+x2/2)≤f(x1)+f(x2)成立不等式f(x)<0的解集为A(1)求集合A(2)设集合B={x||x+4|
设函数f(x)=x3+3bx2+3cx在两个极值点x1、x2,且x1∈[-1,0],x2∈[1,2].则f(x2)的最大值与最小值之和为是否可以消去3c解?c属于[-1,0]f(x2)属于[-16-2C,-2-3C]结果是-15 不对啊...答案见菁优网第二问b→c a