MRI的基本原理?要通俗版的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 14:34:44
MRI的基本原理?要通俗版的
MRI的基本原理?要通俗版的
MRI的基本原理?要通俗版的
核磁共振成像(Nuclear Magnetic Resonance Imaging,简称NMRI),又称自旋成像(spin imaging),也称磁共振成像(Magnetic Resonance Imaging,简称MRI),台湾又称磁振造影,是利用核磁共振(nuclear magnetic resonnance,简称NMR)原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像.
将这种技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具.快速变化的梯度磁场的应用,大大加快了核磁共振成像的速度,使该技术在临床诊断、科学研究的应用成为现实,极大地推动了医学、神经生理学和认知神经科学的迅速发展.
物理原理
核磁共振成像是随着计算机技术、电子电路技术、超导体技术的发展而迅速发展起来的一种生物磁学核自旋成像技术.它是利用磁场与射频脉冲使人体组织内进动的氢核(即H+)发生章动产生射频信号,经计算机处理而成像的.原子核在进动中,吸收与原子核进动频率相同的射频脉冲,即外加交变磁场的频率等于拉莫频率,原子核就发生共振吸收,去掉射频脉冲之后,原子核磁矩又把所吸收的能量中的一部分以电磁波的形式发射出来,称为共振发射.共振吸收和共振发射的过程叫做“核磁共振”.核磁共振成像的“核”指的是氢原子核,因为人体的约70%是由水组成的,MRI即依赖水中氢原子.当把物体放置在磁场中,用适当的电磁波照射它,使之共振,然后分析它释放的电磁波,就可以得知构成这一物体的原子核的位置和种类,据此可以绘制成物体内部的精确立体图像.通过一个磁共振成像扫描人类大脑获得的一个连续切片的动画,由头顶开始,一直到基部.
核磁共振成像是随着-{zh-tw:电脑;zh-cn:计算机}-技术、电子电路技术、超导体技术的发展而迅速发展起来的一种生物磁学核自旋成像技术.医生考虑到患者对“核”的恐惧心理,故常将这门技术称为磁共振成像.它是利用磁场与射频脉冲使人体组织内进动的氢核(即H+)发生章动产生射频信号,经-{zh-tw:电脑;zh-cn:计算机}-处理而成像的.
原子核在进动中,吸收与原子核进动频率相同的射频脉冲,即外加交变磁场的频率等于拉莫频率,原子核就发生共振吸收,去掉射频脉冲之后,原子核磁矩又把所吸收的能量中的一部分以电磁波的形式发射出来,称为共振发射.共振吸收和共振发射的过程叫做“核磁共振”.
氢核是人体成像的首选核种:人体各种组织含有大量的水和碳氢化合物,所以氢核的核磁共振灵活度高、信号强,这是人们首选氢核作为人体成像元素的原因.NMR信号强度与样品中氢核密度有关,人体中各种组织间含水比例不同,即含氢核数的多少不同,则NMR信号强度有差异,利用这种差异作为特征量,把各种组织分开,这就是氢核密度的核磁共振图像.人体不同组织之间、正常组织与该组织中的病变组织之间氢核密度、弛豫时间T1、T2三个参数的差异,是MRI用于临床诊断最主要的物理基础.
当施加一射频脉冲信号时,氢核能态发生变化,射频过后,氢核返回初始能态,共振产生的电磁波便发射出来.原子核振动的微小差别可以被精确地检测到,经过进一步的计算机处理,即可能获得反应组织化学结构组成的三维图像,从中我们可以获得包括组织中水分差异以及水分子运动的信息.这样,病理变化就能被记录下来.
人体2/3的重量为水分,如此高的比例正是磁共振成像技术能被广泛应用于医学诊断的基础.人体内器官和组织中的水分并不相同,很多疾病的病理过程会导致水分形态的变化,即可由磁共振图像反应出来.
MRI所获得的图像非常清晰精细,大大提高了医生的诊断效率,避免了剖胸或剖腹探查诊断的手术.由于MRI不使用对人体有害的X射线和易引起过敏反应的造影剂,因此对人体没有损害.MRI可对人体各部位多角度、多平面成像,其分辨力高,能更客观更具体地显示人体内的解剖组织及相邻关系,对病灶能更好地进行定位定性.对全身各系统疾病的诊断,尤其是早期肿瘤的诊断有很大的价值.
系统组成
NMR实验装置
采用调节频率的方法来达到核磁共振.由线圈向样品发射电磁波,调制振荡器的作用是使射频电磁波的频率在样品共振频率附近连续变化.当频率正好与核磁共振频率吻合时,射频振荡器的输出就会出现一个吸收峰,这可以在示波器上显示出来,同时由频率计即刻读出这时的共振频率值.核磁共振谱仪是专门用于观测核磁共振的仪器,主要由磁铁、探头和谱仪三大部分组成.磁铁的功用是产生一个恒定的磁场;探头置于磁极之间,用于探测核磁共振信号;谱仪是将共振信号放大处理并显示和记录下来.
MRI系统的组成
现代临床高场(3.0T)MRI扫描器[编辑]
磁铁系统
静磁场:又称主磁场.当前临床所用超导磁铁,磁场强度有0.5到4.0T(特斯拉),常见的为1.5T和3.0T;动物实验用的小型MRI则有4.7T、7.0T与9.4T等多种主磁场强度.另有匀磁线圈(shim coil)协助达到磁场的高均匀度.
梯度场:用来产生并控制磁场中的梯度,以实现NMR信号的空间编码.这个系统有三组线圈,产生x、y、z三个方向的梯度场,线圈组的磁场叠加起来,可得到任意方向的梯度场.
射频系统
射频(RF)发生器:产生短而强的射频场,以脉冲方式加到样品上,使样品中的氢核产生NMR现象.
射频(RF)接收器:接收NMR信号,放大后进入图像处理系统.
计算机图像重建系统
由射频接收器送来的信号经A/D转换器,把模拟信号转换成数学信号,根据与观察层面各体素的对应关系,经计算机处理,得出层面图像数据,再经D/A转换器,加到图像显示器上,按NMR的大小,用不同的灰度等级显示出欲观察层面的图像.
MRI的基本方法
选片梯度场Gz
相编码和频率编码
图像重建
磁共振成像的优点
与1901年获得诺贝尔物理学奖的普通X射线或1979年获得诺贝尔医学奖的计算机层析成像(computerized tomography, CT)相比,磁共振成像的最大优点是它是目前少有的对人体没有任何伤害的安全、快速、准确的临床诊断方法.如今全球每年至少有6000万病例利用核磁共振成像技术进行检查.具体说来有以下几点:
1.对软组织有极好的分辨力.对膀胱、直肠、子宫、阴道、骨、关节、肌肉等部位的检查优于CT;
2.各种参数都可以用来成像,多个成像参数能提供丰富的诊断信息,这使得医疗诊断和对人体内代谢和功能的研究方便、有效.例如肝炎和肝硬化的T1值变大,而肝癌的T1值更大,作T1加权图像,可区别肝部良性肿瘤与恶性肿瘤;
3.通过调节磁场可自由选择所需剖面.能得到其它成像技术所不能接近或难以接近部位的图像.对于椎间盘和脊髓,可作矢状面、冠状面、横断面成像,可以看到神经根、脊髓和神经节等.不像CT只能获取与人体长轴垂直的横断面;
4.对人体没有氢(1H)、碳(13C)、氮(14N和15N)、磷(31P)等.
MRI的缺点及可能存在的危害
虽然MRI对患者没有致命性的损伤,但还是给患者带来了一些不适感.在MRI诊断前应当采取必要的措施,把这种负面影响降到最低限度.其缺点主要有:
1.和CT一样,MRI也是解剖性影像诊断,很多病变单凭核磁共振检查仍难以确诊,不像内窥镜可同时获得影像和病理两方面的诊断;
2.对肺部的检查不优于X射线或CT检查,对肝脏、胰腺、肾上腺、前列腺的检查不比CT优越,但费用要高昂得多;
3.对胃肠道的病变不如内窥镜检查;
4.扫描时间长,空间分辨力不够理想;
5.由于强磁场的原因,MRI对诸如体内有磁金属或起搏器的特殊病人却不能适用.
MRI系统可能对人体造成伤害的因素主要包括以下方面:
1.强静磁场:在有铁磁性物质存在的情况下,不论是埋植在患者体内还是在磁场范围内,都可能是危险因素;
2.随时间变化的梯度场:可在受试者体内诱导产生电场而兴奋神经或肌肉.外周神经兴奋是梯度场安全的上限指标.在足够强度下,可以产生外周神经兴奋(如刺痛或叩击感),甚至引起心脏兴奋或心室振颤;
3.射频场(RF)的致热效应:在MRI聚焦或测量过程中所用到的大角度射频场发射,其电磁能量在患者组织内转化成热能,使组织温度升高.RF的致热效应需要进一步探讨,临床扫描仪对于射频能量有所谓“特定吸收率”(specific absorption rate, SAR)的限制;
4.噪声:MRI运行过程中产生的各种噪声,可能使某些患者的听力受到损伤;
造影剂的毒副作用:目前使用的造影剂主要为含钆的化合物,副作用发生率在2%-4%.
纵向给予一个梯度磁场,使质子处于激发态,并且不同高度的质子具有不同的共振频率,但是同一平面的质子的共振频率相同,此时给予一个射频,使满足这一频率的同一平面质子发生共振。