已知a1+a2+…….+an=1求证:a1^2/(a1+a2) + a2^2/(a2+a3)…….+an-1^2/(an-1+an) +an^2/(an+a1)>1/2已知a1+a2+…….+an=1求证:a1^2/(a1+a2) + a2^2/(a2+a3)……+an-1^2/(an-1+an) +an^2/(an+a1)>1/2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 18:20:58

已知a1+a2+…….+an=1求证:a1^2/(a1+a2) + a2^2/(a2+a3)…….+an-1^2/(an-1+an) +an^2/(an+a1)>1/2已知a1+a2+…….+an=1求证:a1^2/(a1+a2) + a2^2/(a2+a3)……+an-1^2/(an-1+an) +an^2/(an+a1)>1/2
已知a1+a2+…….+an=1求证:a1^2/(a1+a2) + a2^2/(a2+a3)…….+an-1^2/(an-1+an) +an^2/(an+a1)>1/2
已知a1+a2+…….+an=1
求证:a1^2/(a1+a2) + a2^2/(a2+a3)……+an-1^2/(an-1+an) +an^2/(an+a1)>1/2

已知a1+a2+…….+an=1求证:a1^2/(a1+a2) + a2^2/(a2+a3)…….+an-1^2/(an-1+an) +an^2/(an+a1)>1/2已知a1+a2+…….+an=1求证:a1^2/(a1+a2) + a2^2/(a2+a3)……+an-1^2/(an-1+an) +an^2/(an+a1)>1/2
题目应该是求证大于等于0
用数学归纳法
当n=2时
若证a1^2/(a1+a2) + a2^2/(a2+a1)>1/2
即a1^2+ a2^2>1/2
a1^2+ a2^2>(a1+a2)^2/2
(a1-a2)^2>0
得证
假设n-1时成立
即a1^2/(a1+a2) + a2^2/(a2+a3)……+an-1^2/(an-1+a1)>1/2
即a1^2/(a1+a2) + a2^2/(a2+a3)……+an-1^2/(an-1+an) +an^2/(an+a1)>1/2+an^2/(an+a1)+an-1^2/(an-1+an)-an-1^2/(an-1+a1)
只需证明an^2/(an+a1)+an-1^2/(an-1+an)-an-1^2/(an-1+a1)>0即可
an^2/(an+a1)+an-1^2/(an-1+an)-an-1^2/(an-1+a1)>
an^2/(an+a1+an-1+an)-1^2/(an-1+an+a1)-an-1^2/(an-1+a1)+an=
an^2/(an+a1+an-1+an)>0
得证

题目应该是求证大于等于0
用数学归纳法
当n=2时
若证a1^2/(a1+a2) + a2^2/(a2+a1)>1/2
即a1^2+ a2^2>1/2
a1^2+ a2^2>(a1+a2)^2/2
(a1-a2)^2>0
得证

已知a1+a2+…….+an=1求证:a1^2/(a1+a2) + a2^2/(a2+a3)…….+an-1^2/(an-1+an) +an^2/(an+a1)>1/2已知a1+a2+…….+an=1求证:a1^2/(a1+a2) + a2^2/(a2+a3)……+an-1^2/(an-1+an) +an^2/(an+a1)>1/2 数列放缩已知an=n^2,求证1/a1+1/a2+…+1/an 求证a1+(1-a1)a2+(1-a1)(1-a2)a3+…+(1-a1)(1-a2)…(1-an-1)an=1-(1-a1)(1-a2)…(1-an-1)(1-an)求证a1+(1-a1)a2+(1-a1)(1-a2)a3+…+(1-a1)(1-a2)…(1-an-1)an=1-(1-a1)(1-a2)…(1-an-1)(1-an) 已知a1,a2,a3…an∈R+,且a1a2a3…an=1,求证(1+a1)(1+a2)…(1+an)≥2^n 已知数列{an}为等差数列,且a10=0,求证a1+a2+……+an=a1+a2+……a(19-n) 已知数列{an}an≥0,a1=0,a(n+1)^2+a(n+1)-1=an^2,记Sn=a1+a2+...+an,Tn=i/(1+a1)+1/(1+a1)(1+a2)+…+1/(1+a1)(1+a2)…(1+an)求证当n是正整数时,(1)ann-2;(3)Tn 已知数列{an}an≥0,a1=0,a(n+1)^2+a(n+1)-1=an^2,记Sn=a1+a2+...+an,Tn=i/(1+a1)+1/(1+a1)(1+a2)+…+1/(1+a1)(1+a2)…(1+an),当n是正整数时,求证,(1)ann-2;(3)Tn 求证:(a1+a2+…+an)/n>=(a1*a2*…*an)^(1/n)最好用初等数学来求证 已知等差数列{an}的各项均为正数 求证:1/(√a1+√a2)+1/(√a2+√a3)+……+1/(√an-1+√an)=(已知等差数列{an}的各项均为正数 求证:1/(√a1+√a2)+1/(√a2+√a3)+……+1/(√an-1+√an)=(n-1)/(√a1+√an) 已知数列{an}中满足a1=1,a(n+1)=2an+1 (n∈N*),证明a1/a2+a2/a3+…+an/a(n+1) 已知a1,a2,a3...an为任意的正实数,求证1/a1+2/(a1+a2)+.n/(a1+a2+...an) 已知a1,a2,a3...an为任意的正实数,求证1/a1+2/(a1+a2)+.n/(a1+a2+...an) (1)数列{an}中,a1=1,a2=-3,a(n+1)=an+a(n+2),则a2005=____(2)已知数列{an}满足a1=1,a1×a2×a3…an=n^2,求an. 已知数列an中a1+a2……an=(3^n-2^)/2^n 求证an是等比数列 求解一道数列证明题已知a(n)=2∧n-3∧n 求证1/a1 +1/a2 +……+1/an <3/2 设a1,a2……an为正数, ,求证(a1a2)/a3+(a2a3)/a1 +(a3a1)/a2>=a1+a2+a3 an=3^n-2^n,求证:1/a1+1/a2+……+1/an 已知数列{an}满足:a1+a2+a3+…+an=n-an 求证{an-1}为等比数列 令bn=(2-n)(an-1)求数列的最大项已知数列{an}满足:a1+a2+a3+…+an=n-an求证{an-1}为等比数列令bn=(2-n)(an-1)求数列的最大项