奇函数f(x)在区间(-∞,0)上单调递减,f(2)=0,则不等式(x-1)f(x)>0的解集是答案(-2,0)U(1,2) 求解释!求过程!
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:52:14
奇函数f(x)在区间(-∞,0)上单调递减,f(2)=0,则不等式(x-1)f(x)>0的解集是答案(-2,0)U(1,2) 求解释!求过程!
奇函数f(x)在区间(-∞,0)上单调递减,f(2)=0,则不等式(x-1)f(x)>0的解集是
答案(-2,0)U(1,2) 求解释!求过程!
奇函数f(x)在区间(-∞,0)上单调递减,f(2)=0,则不等式(x-1)f(x)>0的解集是答案(-2,0)U(1,2) 求解释!求过程!
我觉得画图比较好做
但是画图麻烦.我给你说说啊
因为(负无穷,0)单调减 又是奇函数 所以(0,正无穷)也单调减
又因为f(2)=0 所以f(-2)=0 然后你自己画个图~~
发现(0,2)和(负无穷,-2)区间f(x)>0
(-2,0)和(2,正无穷)区间 f(x)0 分情况 如果x>1 那么要求 F(X)>0 所以(1,2)区间成立
如果 x>1 那么要求f(x)
不等式(x-1)f(x)>0(#)
∵奇函数f(x)在区间(-∞,0)上单调递减
∴f(x)在区间(0,+∞,)上也单调递减
∵f(2)=0,∴f(-2)=0
x<-2, f(x)>0, x-1<-3 , (#)不成立
-2
全部展开
不等式(x-1)f(x)>0(#)
∵奇函数f(x)在区间(-∞,0)上单调递减
∴f(x)在区间(0,+∞,)上也单调递减
∵f(2)=0,∴f(-2)=0
x<-2, f(x)>0, x-1<-3 , (#)不成立
-2
1
x>2,x-1>1,f(x)<0 (#)不成立
综上,答案是(-2,0)U(1,2)
收起
当x>0时
(x-1)f(x)>0
(x-1)>0 f(x)>0
x>1 f(x)<2
当x<0时
(x-1)f(x)>0
(x-1)<0 f(x)<0
x<1 f(x)>-2
综上不等式(x-1)f(x)>0的解集是(-2,0)U(1,2)
此题可能是一道错题!
因为f(x)是奇函数,在区间(-∞,0)上单调递减,因此在区间(0,+∞)上也单调减。
又f(2)=0,所以f(-2)=-f(2)=0;那么f(x)在区间(-2,2)上只能恒等于0;y=x-1是单增函数,
当x<1时恒有x-1<0,在区间(-2,1)内恒有(x-1)f(x)=0;在(-∞,-2]上恒有(x-1)f(x)<0;在
[1,2]上恒有...
全部展开
此题可能是一道错题!
因为f(x)是奇函数,在区间(-∞,0)上单调递减,因此在区间(0,+∞)上也单调减。
又f(2)=0,所以f(-2)=-f(2)=0;那么f(x)在区间(-2,2)上只能恒等于0;y=x-1是单增函数,
当x<1时恒有x-1<0,在区间(-2,1)内恒有(x-1)f(x)=0;在(-∞,-2]上恒有(x-1)f(x)<0;在
[1,2]上恒有(x-1)f(x)=0;在[2,+∞)上恒有(x-1)f(x)<0;故不等式(x-1)f(x)>0无解。
收起
奇函数f(2)=0.则f(-2)=0,且f(x)=-f(-x),f(0)=0.又因为f(x)在区间(-∞,0)上单调递减
所以f(x)在区间(-∞,-2)U (0,2)大于0,在区间(-2,0)U(2,,+∞)小于0
设g(x)=x-1,则g(x)在区间(-∞,1)小于0,在区间(1,+∞)大于0
所以x<-2时,g(x)f(x)<0
-2
全部展开
奇函数f(2)=0.则f(-2)=0,且f(x)=-f(-x),f(0)=0.又因为f(x)在区间(-∞,0)上单调递减
所以f(x)在区间(-∞,-2)U (0,2)大于0,在区间(-2,0)U(2,,+∞)小于0
设g(x)=x-1,则g(x)在区间(-∞,1)小于0,在区间(1,+∞)大于0
所以x<-2时,g(x)f(x)<0
-2
0
x>2时,g(x)f(x)<0
综上,不等式(x-1)f(x)>0的解集是(-2,0)U(1,2)
收起