已知定义在R上的奇函数f(x)在区间(0,+∞)上单调递增.已知定义在R上的奇函数f(x)在区间(0,+∞)上单调递增,f(1/2)=0,若△ABC的内角A满足f(cosA)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 10:51:24
已知定义在R上的奇函数f(x)在区间(0,+∞)上单调递增.已知定义在R上的奇函数f(x)在区间(0,+∞)上单调递增,f(1/2)=0,若△ABC的内角A满足f(cosA)
已知定义在R上的奇函数f(x)在区间(0,+∞)上单调递增.
已知定义在R上的奇函数f(x)在区间(0,+∞)上单调递增,f(1/2)=0,若△ABC的内角A满足f(cosA)
已知定义在R上的奇函数f(x)在区间(0,+∞)上单调递增.已知定义在R上的奇函数f(x)在区间(0,+∞)上单调递增,f(1/2)=0,若△ABC的内角A满足f(cosA)
首先由奇函数的性质可知,他在(0,∞)上递增,所以他在(∞,0)上也是递增的,而且函数图形是原点对称图形.画出图形大概是这样的.所以cos(A)的取值范围是:-1<=cos(A)<=-1/2和
0<=cos(A)<=1/2,所以A的取值范围是[2nΠ+60度,2nΠ90度]∪[2nΠ120度,2nΠ180度],n=0,±1,±2,±3.
解析;:由已知定义在R上的奇函数f(x)在区间(0,+∞)上单调递增 得:f(0)=0 x小于-1/2时f(x)小于0 0
由于函数单调递增且f (1/2)=0,所以0≤cos A ≤1/2∪-1≤cos A ≤-1/2然后解得答案为【60度,90度】∪【120度,180度)
已知定义在R上的奇函数,f(x)满足f(X-4)=-f(x),且在区间【0,2】上是增函数,则A.f(-25)
已知定义在R上的奇函数f(x),满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则( )A、f(-25)
已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则( )A,f(-25)
已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数A f(—25)
已知定义在R上的奇函数f(x)满足f(x-4)= -f(x),且在区间【0,2】上是增函数,则A.f(-25)
高中数学函数! 已知定义在R 上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数.若方高中数学函数! 已知定义在R 上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数.
已知定义在R上的奇函数F(x)在区间(0,+∞)上单调递增,若f(1/3)=0,已知定义在R上的奇函数F(x)在区间(0,+∞)上单调递增,若f(1/3)=0,则满足f(log1/8 x)>0的x取值范围
已知定义在R上的奇函数f(x)满足f(x-4)=-f(x).且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[-8,8]...已知定义在R上的奇函数f(x)满足f(x-4)=-f(x).且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[-8,8]上
已知函数f(x)是定义在R上的奇函数 且当x>0时
已知定义在R上的奇函数f(x)在区间(0,+∞)上单调递增.已知定义在R上的奇函数f(x)在区间(0,+∞)上单调递增,f(1/2)=0,若△ABC的内角A满足f(cosA)
已知定义在R上的奇函数fx满足f(x-4)=-fx且在区间[0,2]上是增函数则
定义在R上的奇函数Y=f(x),已知Y=f(x)在区间(0,+无穷大)有3个零点,则函数Y=f(x)在R上的零点个数为-----
定义在R上的奇函数Y=f(x),已知Y=f(x)在区间(0,+无穷大)有3个零点,则函数Y=f(x)在R上的零点个数为--
已知定义在R上的奇函数f(x)满足f(x-4)=负的f(x),且在区间[0,2]上是增函数,则f(-25),f(11),f(80)大小关系?在网上看到了别人的解法,还是看不懂.f(x)是奇函数,且f(x-4)=-f(x),且在区间[0,2]上是增函数则把f(-
已知f(x)是定义在R上的奇函数,且满足f(x+2)=-f(x),当0
已知定义在r上的函数f(x)是奇函数,且f(x)=f(2-x),当0
已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则f(-25)、f(11)、f(80)的大小关系是?
已知定义在R上的奇函数,f(x)满足f(X-4)=-f(x),且在区间【0,2】上是增函数,则比较f(-25),f(11),f(80)的大小.