设f(x)在[a,b]上连续,且F(x)=积分号x->a (x-t)f(t)dt,x属于[a,b],求F(x)的n阶导.a为积分下限F(x)=∫(x-t)f(t)dt,定积分的上限为x,下限为a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:11:08
设f(x)在[a,b]上连续,且F(x)=积分号x->a (x-t)f(t)dt,x属于[a,b],求F(x)的n阶导.a为积分下限F(x)=∫(x-t)f(t)dt,定积分的上限为x,下限为a
设f(x)在[a,b]上连续,且F(x)=积分号x->a (x-t)f(t)dt,x属于[a,b],求F(x)的n阶导.a为积分下限
F(x)=∫(x-t)f(t)dt,定积分的上限为x,下限为a
设f(x)在[a,b]上连续,且F(x)=积分号x->a (x-t)f(t)dt,x属于[a,b],求F(x)的n阶导.a为积分下限F(x)=∫(x-t)f(t)dt,定积分的上限为x,下限为a
F(x)=x∫f(t)dt-∫tf(t)dt
F'(x)=∫f(t)dt+xf(x)-xf(x)=∫f(t)dt (积分含上下限)
F''(x)=f(x)
F(x)(n)=f(x)(n-2) n≥2 F(x)(n)代表F(x)的n阶导数
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,且a
设函数f(x)在[a,b]上连续,在(a,b)内可导且f'(x)
设函数f(x)在[a,b]上连续,在(a,b)上可导且f'(x)
设函数f(x),g(x)在区间[a,b]上连续,且f(a)
证明设f(x)在有限开区间(a,b)内连续,且f(a+) ,f(b-)存在,则f(x)在(a,b)上一致连续.
设f(x) 在[a,b] 上连续,且f(x)>0.求证:∫(a,b)f(x)dx*∫(a,bdx/f(x)≥(b-a)^2.
设f(x)在[a,b]上连续,且没有零点,证明f(x)在[a,b]上保号
设函数f(x)在[a,b]上连续,在(a,b)可导,且f(a)*f(b)>0,f(a)*f((a+b)/2)
设函数f(x)在[a,b]上连续,a
设f(x)在[a,b]上连续,a
设函数f(x)在[a,b]上连续,a
设f(x)在闭区间(a,b)上连续,且a
设函数f(x)在[a,b]上连续,且a
设函数f(x)在[a,b]上连续,且a
一条简单的函数连续和极限问题设函数f(x)、g(x)在区间[a,b]上连续,且f(a)>g(a),f(b)
微积分 定积分证明 “设f(x)为正,且在[a,b]上连续...”