已知四元非齐次线性方程组Ax=b中,R(A)=3,而X1,X2,X3为它的3个解向量,且X1=(1,2,3,4)^T,X2+X3=(2,3,4,5)^T,这提方程组的通解是?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 05:58:27
已知四元非齐次线性方程组Ax=b中,R(A)=3,而X1,X2,X3为它的3个解向量,且X1=(1,2,3,4)^T,X2+X3=(2,3,4,5)^T,这提方程组的通解是?
已知四元非齐次线性方程组Ax=b中,R(A)=3,而X1,X2,X3为它的3个解向量,且X1=(1,2,3,4)^T,X2+X3=(2,3,4,5)^T,这提方程组的通解是?
已知四元非齐次线性方程组Ax=b中,R(A)=3,而X1,X2,X3为它的3个解向量,且X1=(1,2,3,4)^T,X2+X3=(2,3,4,5)^T,这提方程组的通解是?
因为 r(A)=3
所以 AX=0 的基础解系含 4-r(A) = 1 个向量
所以 2X1 - (X2+X3) = (0,1,2,3)^T 是 AX=0 的基础解系.
所以 AX=b 的通解为 (1,2,3,4)^T + k(0,1,2,3)^T.
在4元非齐次线性方程组AX=b中,已知r(A)=2 n1 n2 n3为方程组三个线性无关的解 则AX=b通解?
已知n元线性方程组AX=b有解,且r(A)
Ax=b是线性方程组,r(A)
老师,关于矩阵秩的证明,具体内容如下:设n元非齐次线性方程组Ax=b中,R(A)=R(A,b)=r
非齐次线性方程组AX=b中未知量的个数为n,方程个数为m,R(A)=r,则r=m时,AX=b有解 为什么?
非齐次线性方程组AX=b中未知量的个数为n,方程个数为m,R(A)=r,则 r=m时,AX=b有解 为什么?
设A为mxn矩阵,秩r(A)=r,则以下结论中一定正确的为?(A) 当r=n时,非齐次线性方程组Ax=b有解; (B) 当r=m时,非齐次线性方程组Ax=b有解; (C) 当r
AX=B 如何证明非齐次线性方程组无解时r(a,b)=r(a)+1 (a,b)为增广矩阵
在线性方程组Ax=b中,A是8×6阵,如果r(A)=r(Ab)=b,则Ax=bA.有唯一解 B.有无穷多解 C.D.无法确定是否有解
已知三元非齐次线性方程组Ax=b ,系数矩阵的秩R(A)=2 ,a1,a2是Ax=b 两个不同的解,则Ax=0的通解
设非齐次线性方程组Ax=b中,系数矩阵A为m*n矩阵,且r(A)=r,则下列结论中正确的是A、r=m时,Ax=b有解B、r=n是,Ax=b有唯一解C、m=n时,Ax=b有唯一解
线性方程组AX=b的增广矩阵
已知四元非齐次线性方程组Ax=b中,R(A)=3,而X1,X2,X3为它的3个解向量,且X1=(1,2,3,4)^T,X2+X3=(2,3,4,5)^T,这提方程组的通解是?
设非齐次线性方程组Ax=b中,系数矩阵A为m*n矩阵,且R(A)=r为什么r=m是方程组有解?看了刘老师之前的回答“因为 m = r(A)
刘老师你好:n 元线性方程组 AX = b 无解的充分必要条件是 R(A) < R(A,b)这里的R(A),R(A,b)是什么?
关于线性代数的一道题目,已知四元非齐次线性方程组AX=b,A的秩 R(A)=3,η1,η2,η3是它的三个解向量,其中 η1+η2 =(竖列)[1,2,0,2] ,η2+η3=(竖列)[1,0,1,3]求该非齐次线性方程组的通解.
已知A为2x3矩阵,R(A)=2,a1,a2为非齐次线性方程组Ax=b的两个解向量,a1=3,a1+a2=3,则Ax=b的通解为?0 2 1 3
考研线性代数疑问——关于线性方程组的问题同济四版有这么一段话:n元线性方程组Ax=b(1) 无解的充要条件是R(A)