已知命题p:"存在x∈R,使4^x+2^(x+1)+m=0”若 “否p”是假命题 则m的范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:40:47
已知命题p:"存在x∈R,使4^x+2^(x+1)+m=0”若 “否p”是假命题 则m的范围
已知命题p:"存在x∈R,使4^x+2^(x+1)+m=0”若 “否p”是假命题 则m的范围
已知命题p:"存在x∈R,使4^x+2^(x+1)+m=0”若 “否p”是假命题 则m的范围
“非p”是假命题
∴P是真命题
4^x+2^(x+1)+m=0
(2^x)^x+2*(2^x)+m=0
设t=2^x>0
t^2+2t+m=0,t>0
(t+1)^2+m-1=0
(t+1)^2=1-m
t>0
∴(t+1)^2>1
∴1-m>1
m
已知命题p:“对所有X∈R,存在m∈R,使4^x-2^(x+1)+m=0”,若命题┌P是假命题,不好意思,已知命题p:“对所有X∈R,存在m∈R,使4^x+2^(x+1)+m=0”,若命题P是假命题,求m范围
已知命题p:存在x∈R,使4^x+2^(x+1)+m=0”若 “否p”是假命题 则m的范围
已知命题p:存在x∈R,使4^x+2^(x+1)+m=0”若 “否p”是假命题 则m的范围
已知命题p:存在X∈R,SinX
已知命题p:对任意x∈R,存在m∈R,使4∧x+2∧xm+1=o .若命题 非p是假命题,求实数m的取值范围.
已知向量a=(2,1+sinx),b=(1,cosx),命题p;存在x∈R 使a⊥b,试证明命题p是假命题
已知命题p:存在X∈R,使x(6-x)≥-16成立;命题q:存在x∈R,使x^2+2x+1-m^2≤0(m<0)成立.若p是q成立的已知命题p:存在X∈R,使x(6-x)≥-16成立;命题q:存在x∈R,使x^2+2x+1-m^2≤0(m<0)成立。若p是q成
已知命题p:任意x∈【0.1】,a≥e^x,命题q:存在x∈R,x^2+4x+a=0,若命题p且q是假命题,则实数a的取值范围
已知命题p:任意x∈[1,2],x²-a≥0;命题q:存在x∈R,使x²+2ax+2-a=0
已知命题p:存在x∈R,使tanx=1,命题q:x2-3x+2<0的解集是{x|1<x<2},下列结论:①命题“p∧q”是真命题; ②命题“p∧¬q”是假命题;③命题“¬p∨q”是真命题; ④命题“¬p∨¬q”是假命
已知命题p:对任意x∈R,存在m∈R,使4^x+2^x+1+m=0,若非p是假命题,则实数m的范围是?
已知命题p:“对(全称量词)x属于R,(存在量词)m属于R,使4^x-2^(x+1)+m=0”,若命题非p是假命题,求实数m的取值范围
已知命题p:存在x属于R,x^2+1/x^2
已知命题p:存在x属于R,x^2+1/x
12.已知命题p:对任意x∈R,存在m∈R,4*x+2*xm+1=0,若命题非P是假命题,则实数的取值范围是————问题补
已知命题p 存在x属于R,使2ax2+ax-3/8>0,若命题p是假命题,则实数a的取值范围为?
已知命题P:存在x∈R,mx^2+1≤0;命题q:任意x∈R,x^2mx+1>0,若命题P并q为假命题,则实数m的取值范围是?
已知命题p:存在x属于R,x^2+2ax+a