求极限(sin(2/n)+cos(3/n))^(-n)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:38:26
求极限(sin(2/n)+cos(3/n))^(-n)
求极限(sin(2/n)+cos(3/n))^(-n)
求极限(sin(2/n)+cos(3/n))^(-n)
lim(n→∞)[(sin(2/n)+cos(3/n))^(-n)]
=lim(n→∞)[(sin(2/n)+1)^(-n)]
=e^[lim(n→∞)(-n)ln(sin(2/n)+1)](等价无穷小替换)
=e^[lim(n→∞)(-n)(sin(2/n)]
=e^{lim(n→∞)(-2)[(sin(2/n))/(2/n)]}
=e^(-2)
1
求极限(sin(2/n)+cos(3/n))^(-n)
求(3n-sin(n^2))/(2n+cos(n^2))的极限,当n趋于无限大时
[3n-sin (n 平方)]/[2n+cos (n平方)]的极限
求极限(sin^2)n/n+1
求极限:lim((2n∧2-3n+1)/n+1)×sin n趋于无穷
sin(pai/n)^2求极限收敛性
为什么sin(nπ/2)极限不存在,cos(1/n)极限是1
求极限lim(1/n)*[(sin(pi/n)+sin(2pi/n)+.+sin(n*pi/n)] n->无穷
求cos(n)*sin(a/n)的极限(a不等于0)
求Lim (2sin^n x+3cos^n x)∕(sin^n x+cos^n x) ,0≤x≤π/2n趋于无穷大
高数求极限n趋于无穷大时,lim (1/n - sin(1/n))/ (1/n^2),lim (1/n - sin(1/n))/ (1/n^3)这一式子呢求极限n趋于无穷大时,lim (1/n - sin(1/n))/ (1/n^2),lim (1/n - sin(1/n))/ (1/n^3)这一式子呢?
如果极限limsin(n)/n=0,则lim)n-3sin(n))/(sin(n)-2n)=______
当n趋于无穷时,求[sin(π/n)/(n+1)+sin(2π/n)/(n+1/2)+.sinπ/(n+1/n)]的极限
求极限 n*sin(x/n) n趋向无穷
利用无穷小的性质求极限lim(x→+∞)[(n^2+1)/n^3]sin(n!)=
(sin(ln2/2)+sin(ln3/3)+...+sin(lnn/n))^(1/n)的极限
求极限 lim sin pi(n^2+1)^(1/2)
求极限 lim sin pi*(n^2+1)^(1/2)