在二项式(ax的m次方+bx的n次方)的12方,(a>0,b>0,m,n不等于0)中有2m+n=0.如果它的展开式里系数最大的项恰好是常数项.1.求它是第几项2.求a分之b的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 08:20:56
在二项式(ax的m次方+bx的n次方)的12方,(a>0,b>0,m,n不等于0)中有2m+n=0.如果它的展开式里系数最大的项恰好是常数项.1.求它是第几项2.求a分之b的取值范围
在二项式(ax的m次方+bx的n次方)的12方,(a>0,b>0,m,n不等于0)中有2m+n=0.如果它的展开式里系数最大的项恰好是常数项.
1.求它是第几项
2.求a分之b的取值范围
在二项式(ax的m次方+bx的n次方)的12方,(a>0,b>0,m,n不等于0)中有2m+n=0.如果它的展开式里系数最大的项恰好是常数项.1.求它是第几项2.求a分之b的取值范围
由于2m+n=0
那么n=-2m
假设是按照a展开第k项
那么第k项的表达式应该是 C(ax^m)^k(bx^n)^12-k=Ca^kb^12-kx^mkx^n(12-k)
因此mk+(-2m)(12-k)=0 k=8
所以是第8项
(ax^m+bx^n)^12
因为2m+n=0
8m+4n=0
C(12,4)*a^8*x^(8m)*b^4*x^4n
=(12*11*10*9)/(4*3*2*1) *a^8b^4*x^(8m+4n)
=495a^8*b^4
为常数项
如果m降次排列就是第五项,n降次排列就是第8项
因为这个最...
全部展开
(ax^m+bx^n)^12
因为2m+n=0
8m+4n=0
C(12,4)*a^8*x^(8m)*b^4*x^4n
=(12*11*10*9)/(4*3*2*1) *a^8b^4*x^(8m+4n)
=495a^8*b^4
为常数项
如果m降次排列就是第五项,n降次排列就是第8项
因为这个最大系数
所以495a^8b^4>C(12,5)a^7b^5
495a>(12*11*10*9*8)/(5*4*3*2*1) b
495a>11*9*8b
b/a<5/8
495a^8b^4>C(12,3)a^9b^3
495b>(12*11*10)/(3*2*1)a
b/a>4/9
所以4/9
收起
第9项