已知:如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:52:34

已知:如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD
已知:如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在x轴上,点P在抛物线上.是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由
分析:(1)已知了B点坐标,易求得OB、OC的长,进而可将B、C的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式.
(2)根据A、C的坐标,易求得直线AC的解析式.由于AB、OC都是定值,则△ABC的面积不变,若四边形ABCD面积最大,则△ADC的面积最大;可过D作x轴的垂线,交AC于M,x轴于N;易得△ADC的面积是DM与OA积的一半,可设出N点的坐标,分别代入直线AC和抛物线的解析式中,即可求出DM的长,进而可得出四边形ABCD的面积与N点横坐标间的函数关系式,根据所得函数的性质即可求出四边形ABCD的最大面积.
为什么说S三角形ADC是DM×AO的一半

已知:如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD
过C点x轴的平行线,过A作y州的平行线交于点G,延长NM交CG于F,
可得四边形OAGC和四边形CFON为矩形,
所以OA=CG,CF+NA=OA,S△DMC=DM×CF,S△DMA=DM×NA,
∵S△ADC=S△DMC+S△DMA=DM×NA+CF=DM×OA

S△ADC=S△AMD+S△CMD=1/2(MD×AN)+1/2(MD×NO)=DM×AO的一半(AO=AN+NO)图形你应该画的来

1.作DO'垂直于X轴交X轴于O',
点B的坐标为(1,0),OC=3OB ,则C(0,-3)
(1,0),(0,-3)代入y=ax^2+3ax+c(a>0),a=3/4,c=-3,
y=(3/4)x^2+(9/4)x-3, A(-4,0)
设D(-m,-n)(0S1=(1/2)(3+n)m+...

全部展开

1.作DO'垂直于X轴交X轴于O',
点B的坐标为(1,0),OC=3OB ,则C(0,-3)
(1,0),(0,-3)代入y=ax^2+3ax+c(a>0),a=3/4,c=-3,
y=(3/4)x^2+(9/4)x-3, A(-4,0)
设D(-m,-n)(0S1=(1/2)(3+n)m+(1/2)(4-m)n,S2=(1/2)*1*3=3/2,
若使S1+S2最大,只要S1最大即可
D(-m,-n)在抛物线上,所以
-n=(3/4)(-m)^2+(9/4)(-m)-3,代入s1,整理得,
S1=(3/2)(-m^2+4m+4),则,
(2/3)S1=-m^2+4m+4=(-m^2+4m-4)+8=-(m-2)^2+8,所以当m=2时 S1最大 即,
S1=(3/2)(-2^2+4*2+4)=12,S1+S2=27/2
2.存在 P为(-3,-3)或[(3+√41)/2,3],P=(3-√41)/2
先假设存在,由题意以AC为一边,可能两种情况
一是P在第四象限(设为P1),二是P在第一象限(设为P2),
如图(图在链接,你自己再划一下)
若P在第四象限
P1C平行于X轴,则P的纵坐标为-3,代入抛物线方程,得出P1为(-3,-3) (另一个解是0,-3,就是C的坐标)
若P在第一象限
ACEP为平行四边形,AE为一条对角线,三角形AEP全等于EAC,AEP的面积等于EAC的面积,AE相等,所以P的纵坐标为3,代入抛物线方程解得,P=[(3+√41)/2或P=(3-√41)/2
存在 P为(-3,-3)或[(3+√41)/2,3]P=(3-√41)/2

收起

已知(如图)抛物线y=ax2-2ax+3(a 如图,抛物线Y=ax2-2ax-b(a 如图,抛物线y=ax2+bx+c(a 已知,如图抛物线y=ax^2+3ax+c(a>0)已知:如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.(1)求抛物线的解析式;(2)若点D是线段AC下方 如图,抛物线y=ax2-8ax+12a(a 如图,已知抛物线y=ax²+bx+c的顶点A在x轴上,与y轴的交点为B(0,-1)已知抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0,-1),且b=-4ac.(1)求A的坐标(2)求抛物线的解析式(3)在抛物线上 已知:如图,抛物线y=ax²-2ax+c【a≠0】与y轴交于点c【0,4】,与x轴交于点a、b,已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).(1)求该抛物线的 如图抛物线y=ax2-5ax=4经过三角形ABC的三个顶点,已知BC平行于X轴,点A在x轴上,点C在y轴上,且AC=BC 抛物线y=ax2-2ax-3a(a 如图,已知抛物线y=ax2-2ax-b(a>0)与x轴的一个交点为B(-1,0),与y轴的负半轴交于点C如图,已知抛物线y=ax2-2ax-b(a>0)与x轴的一个交点为B(-1,0),与y轴的负半轴交于点C,顶点为D.(1)直接写出抛物 如图,已知抛物线y=ax+bx+c,4a>c是否正确 如图,已知抛物线y=ax^2+bx+c(b>0,c 如图已知经过原点的抛物线y=ax2+bx(a不等于0)经过A(-2,2),B(6,6)两点已知过原点的抛物线y=ax2+bx+c经过如图,已知经过原点的抛物线y=ax^2+bx(a≠0)经过A(-2,2),B(6,6)两点,与x轴的另一交点为F,直线AB与x轴 已知抛物线y=ax2+bx+c(a 如图已知抛物线y=ax2+bx+c与x轴的交点为(3,0),(-4,0),开口向下,则方程ax2+bx+c=0 如图13,抛物线Y=AX2 BX C的顶点c(1,0) 已知抛物线y=ax^2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C.(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标;(2)如图(1),连接AB,在题(1)中的抛物线上是否存在 如图,已知抛物线y=ax2+bx(a大于0)与