已知(如图)抛物线y=ax2-2ax+3(a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 16:50:01

已知(如图)抛物线y=ax2-2ax+3(a
已知(如图)抛物线y=ax2-2ax+3(a

已知(如图)抛物线y=ax2-2ax+3(a
(1)抛物线的对称轴为直线x=-(-2a)/2a=1,
∵CE∥x轴,
∴CE=2×1=2,
∵CE:AC=2:10,
∴AC=10,
令x=0,则y=3,
∴点C的坐标是(0,3),
∴OC=3,
根据勾股定理,OA^2=AC^2-OC^2
=√(√10^2-3^2)=1,
所以,点A的坐标是(-1,0);
(2)把点A坐标代入抛物线y=ax^2-2ax+3得,a(-1)2-2a×(-1)+3=0,
解得a=-1,
所以,抛物线解析式为y=-x2+2x+3;
(3)∵C(0,3),CE∥x轴,对称轴为直线x=1,
∴点E的坐标为(2,3),
设直线AE解析式为y=kx+b,
则-k+b=0,
2k+b=3,
解得k=1,b=1,
所以,直线AE的解析式为y=x+1,
∵点P的横坐标是m,
∴PF=(-m^2+2m+3)-(m+1)=-m^2+m+2,
∴S△AEF=S△APF+S△PEF,
=1/2(-m2+m+2)×(m+1)+1/2
(-m2+m+2)×(3-m),
=-2m2+2m+4,
=-2(m-1/2)2+9/2,
所以,当m=1/2时,△AEF的面积最大,最大值为9/2;
(4)点C在以BD为直径的圆上.
理由如下:点D作DG⊥y轴于G,
∵y=-x^2+2x+3=-(x-1)^2+4,
∴顶点D(1,4),
又∵点C(0,3),
∴CG=DG=1,
∴∠1=45°,
令y=0,则-x^2+2x+3=0,即x^2-2x-3=0,
解得x1=-1,x2=3,
∴点B坐标为(3,0),
∴OC=OB=3,
∴∠2=45°,
∴∠BCD=180°-∠1-∠2=180°-45°-45°=90°,
∴点C在以BD为直径的圆上.

已知(如图)抛物线y=ax2-2ax+3(a 如图,抛物线Y=ax2-2ax-b(a 抛物线y=ax2-2ax-3a(a 如图,抛物线y=ax2-8ax+12a(a 一元二次函数已知抛物线Y=AX2-11/2AX+6A(A 已知,如图抛物线y=ax^2+3ax+c(a>0)已知:如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.(1)求抛物线的解析式;(2)若点D是线段AC下方 如图 在平面直角坐标系中 已知抛物线y=ax^+2x+3(a 如图,已知抛物线y=ax²+bx+c的顶点A在x轴上,与y轴的交点为B(0,-1)已知抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0,-1),且b=-4ac.(1)求A的坐标(2)求抛物线的解析式(3)在抛物线上 如图,已知抛物线y=ax2-2ax-b(a>0)与x轴的一个交点为B(-1,0),与y轴的负半轴交于点C如图,已知抛物线y=ax2-2ax-b(a>0)与x轴的一个交点为B(-1,0),与y轴的负半轴交于点C,顶点为D.(1)直接写出抛物 如图已知经过原点的抛物线y=ax2+bx(a不等于0)经过A(-2,2),B(6,6)两点已知过原点的抛物线y=ax2+bx+c经过如图,已知经过原点的抛物线y=ax^2+bx(a≠0)经过A(-2,2),B(6,6)两点,与x轴的另一交点为F,直线AB与x轴 如图,已知抛物线y=ax2+bx(a大于0)与 已知:如图,抛物线y=ax²-2ax+c【a≠0】与y轴交于点c【0,4】,与x轴交于点a、b,已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).(1)求该抛物线的 如图1,二次函数y=ax2-2ax-3a(a 如图,抛物线y=ax2+bx+c(a 如图,已知抛物线y=ax2-2ax-b(a>0)与x轴的一个交点为B(-1,0),与y轴的负半轴交于点C,顶点为D.(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点A的坐标; (2)连接AC.CD,若角ACD=90°, 已知抛物线y=ax^2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C.(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标;(2)如图(1),连接AB,在题(1)中的抛物线上是否存在 如图抛物线y=ax2-8ax+12a与x轴交A、B两点,P在y轴正半轴,PB与抛物线交于C,已知C是BP的中点,∠PBO=45°图在这1、求抛物线解析式2、若将该抛物线沿x轴或y轴方向平移,使平移后的抛物线以P为顶点, 如图,已知抛物线y=ax^2+bx+c(b>0,c