线代证明题:求证向量组A:a1,a2,a3与向量组B:a1+a2+2a3,a1+2a2+a3,2a1+a2+a3等价线性代数证明题
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 02:00:33
线代证明题:求证向量组A:a1,a2,a3与向量组B:a1+a2+2a3,a1+2a2+a3,2a1+a2+a3等价线性代数证明题
线代证明题:求证向量组A:a1,a2,a3与向量组B:a1+a2+2a3,a1+2a2+a3,2a1+a2+a3等价
线性代数证明题
线代证明题:求证向量组A:a1,a2,a3与向量组B:a1+a2+2a3,a1+2a2+a3,2a1+a2+a3等价线性代数证明题
证明:(a1+a2+2a3,a1+2a2+a3,2a1+a2+a3)=(a1,a2,a3)K
其中 K =
1 1 2
1 2 1
2 1 1
所以B组可由A组线性表示.
又因为 |K|=-4≠0,所以K可逆.
所以 (a1,a2,a3) = (a1+a2+2a3,a1+2a2+a3,2a1+a2+a3)K^-1
即 A组可由B组线性表示.
所以两个向量组等价.
设b1=a1+a2+2a3,b2=a1+2a2+a3,b3=2a1+a2+a3,
则 a1=b3-(b1+b2+b3)/4,a2=b2-(b1+b2+b3)/4,a3=b1-(b1+b2+b3)/4,
它们可以互相表出,故等价。
线代证明题:求证向量组A:a1,a2,a3与向量组B:a1+a2+2a3,a1+2a2+a3,2a1+a2+a3等价线性代数证明题
线代证明题若向量a1,a2,a3,a4线性无关,则证向量组a1+a2,a2+a3,a3+a4,a4+a1线性相关.
线代证明题证明:设有向量组a1,a2,a3,a4,若R(a1,a2,a3,a4)>R(a1,a2,a3)则必有R(a1,a2,a3,a4)=R(a1,a2,a3)+1
(线代)证明:向量组A(a1,a2,...,as)能被向量组B(b1,b2,...,bt)线性表示的充要条件是R(A)=R(A,B)RT...证明:向量组A(a1,a2,...,as)能被向量组B(b1,b2,...,bt)线性表示的充要条件是R(A)=R
已知向量组a1,a2,a3线性无关则下列向量组中线性无关的是?A=2a1+a2,2a2+4a2,a3B=a1+a2,a2+a3,a3-aC=a1+3a2,a1-5a2,5a3+a2D=a2-a1,a3-a2,a1+a3E=a1+2a2,a3F=a1+a2,a2+a3=a3+a1不是证明题
设A为n阶正定矩阵,a1,a2.am为n维非零列向量,且ai^TAaj=0(i≠j),证明:a1,a2.am线性无关(大学线代)
问道线性代数向量的证明题如果向量组a1,a2,...,as可由向量组b1,b2,...,bt线性表出求证:r(a1,a2,...,as)
设向量B可以由向量组a1、a2...am线性表示,但不可以由向量组a1、a2...a(m-1)线性表示,证明a1、a2...am与a1、a2...a(m-1),B有相同的秩
解矩阵逆矩阵方程和线性向量题(高等数学)1.用初等变换法求矩阵A={1 1 1 1}{1 2 2 2}{1 1 2 2}{1 1 1 2}的逆矩阵 2如果向量A1,向量A2,向量A3,线性相关,证明向量A1+向量A2,向量A2+向量A3,向量A3+向量A1线
已知向量组{a1,a2,a3},{b1,b2,b3}满足 b1=a1+a2 b2=a1-2a2 b3=a1+a2-7a3,证明向量组a线性无关的充要条件充要条件为向量组b线性无关
证明向量组线性相关已知,A:a1,a2,a3,B:b1,b2,b3.b1=a1-3a2-a3.b2=2a1+a2.b3=a1+4a2+a3.证明:向量组B必线性相关
简单的线代证明题设A是n阶方阵,a1,a2分别是属于A的两个不同的特征值x1,x2的特征向量,证明a1+a2不是A的特征向量
已知向量组A:A1,A2,A3,向量组B,:A1,A2,A3,A4,且R(A)=R(B)=3,证明:向量组A1,A2,A3,A4-A3的秩为3.
设向量组:及向量组:,证明向量与与向量与等价忘咯!没复制过来 设向量组A:a1,a2,a3及向量组B:b1=3a1+2a2+2a3,b2=a1+2a2,b3=2a1+a3证明向量与A与向量B与等价
求证线性相关证明题(两题)1、设向量组a1,a2,a3,a4线性相关,a2,a3,a4线性无关,并且a5可由向量组a1,a2,a3线性表示.证明:向量组的秩R(a1,a2,a3,a4,a5)=32、设向量组a1,a2,a3,a4线性无关,且是非其次线性
向量组证明题 设向量组(1)a1,a2,.as,能由向量组(2)b1,b2,.bt线性表示为(a1,a2,.as)=(b1,b2,.bt)A,其中A为t*s矩阵,且b1,b2,.bt线性无关,证明a1,a2,.as线性无关的充分必要条件R(A)=s
线性代数证明题:设向量组a1、a2,.,a(m-1) (m大于等于3)线性相关,向量组a2,.,线性无关证明:(1)a1能由a2,a3,.a(m-1)线性表示(2)a1不能由a2,a3,.a(m-1)线性表示
证明向量组等价设b1=a2+a3+--------+anb2=a1+a3+--------+an--------------------------bn=a1+a2+--------+an-1,证明A:a1,a2,a3-------an和向量组B:b1,b2----------bn等价