设向量B可以由向量组a1、a2...am线性表示,但不可以由向量组a1、a2...a(m-1)线性表示,证明a1、a2...am与a1、a2...a(m-1),B有相同的秩
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 11:58:25
设向量B可以由向量组a1、a2...am线性表示,但不可以由向量组a1、a2...a(m-1)线性表示,证明a1、a2...am与a1、a2...a(m-1),B有相同的秩
设向量B可以由向量组a1、a2...am线性表示,但不可以由向量组a1、a2...a(m-1)线性表示,
证明a1、a2...am与a1、a2...a(m-1),B有相同的秩
设向量B可以由向量组a1、a2...am线性表示,但不可以由向量组a1、a2...a(m-1)线性表示,证明a1、a2...am与a1、a2...a(m-1),B有相同的秩
证明:证明秩相等就是要证明极大无关组里头的向量个数相等.不妨设向量组
a1、a2...a(m-1)
极大无关组的个数为s.那么我说a(m)一定是不可以由这个向量组线性表示的,这是因为,如果可以的话,那么由于B可以表示为a1、a2...am,即存在不全为零的实数 b1,b2,..,bm,以及不全为零的实数c1,c2,...,c(m-1),使得
B = sum (i从1到m) a(i)bi = sum (i从1到m-1) a(i)bi + a(m)bm
= sum (i从1到m-1) a(i)bi + bm * [sum ( j 从1到m-1) a(j)cj ],这就等于是说B可以由向量a1、a2...a(m-1)表示了,矛盾.
于是,向量组a1、a2...am极大无关组的个数就是s+1(多了am),而向量组
a1、a2...a(m-1),B的极大无关组也是 s+1,因为题设已知条件说了,B不可以由剩下的表示出来.所以秩相等.
设向量B可以由向量组a1、a2...am线性表示,但不可以由向量组a1、a2...a(m-1)线性表示,证明a1、a2...am与a1、a2...a(m-1),B有相同的秩
设n维向量组a1,a2,...,am线性无关,a1,a2,...,am,B线性相关,试用两种不同方法证明B可由,设n维向量组a1,a2,...,am线性无关,a1,a2,...,am,B线性相关,试用两种不同方法证明B可由a1,a2,...,am线性表示,且表示法
设向量组a1,a2,…am线性无关,b,a1,a2,…am线性相关,则b,a1,a2,…am中有且仅有一...设向量组a1,a2,…am线性无关,b,a1,a2,…am线性相关,则b,a1,a2,…am中有且仅有一个向量ai可由其前面的向量线性表出.
设向量组a1,a2,a3,.,am与向量组a1,a2,.,am,b的秩相等,试证:l两向量组等价
设a1,a2...am与b1,b2...bm是n维列向量组,并且a1,a2...am可以由b1,b2...bm线性表示证明:这个两个向量组等价当且仅当它们有相同的秩
向量β可以由a1,a2,…,am线性表示,不能由a1,a2,…,am-1线性表示证明:向量a1,a2,…,am-1, β等
向量组a1,a2,…,am线性无关的充分条件是( ).(A)a1,a2,…,am均不为零向量(B)a1,a2,…,am中任意两个向量的分量不成比例(C)a1,a2,…,am中任意一个向量均不能由其余 个向量线性表示(Da1,a2,…
向量B可以由向量组a1、a2...am线性表示.向量B可以由向量组a1、a2...am线性表示,则下列结论正确的是 1,存在一组不全为零的数k1,k2,k3...,使得B=k1a1+k2a2+...+kmam 2,存在一组全不为零的数k1,k2,...km,使得
设向量组a1,a2,...am的秩为r,则向量组a1,a1+a2,...,a1+a2+...am的秩为?
设向量组 a1,a2,a3,···,am与向量a1,a2,a3,···,am,b有相同的秩,证明b能a1,a2,a3,···,am线性表示
设向量a1,a2,...an线性无关,证明向量b,a1,a2,...an线性无关的充要条件是向量b不能由由a1..an线性表
设向量b能由向量组a1,…am线性表示,但不能由Ⅰ:a1,…am-1向量组线性表示,记向量组Ⅱ:a1,…,am-1,b.证明向量am不能由向量组Ⅰ线性表示但能由向量组Ⅱ线性表示
两个线性代数的证明题证明:若向量组a1,a2,a3,...am线性无关,a1,a2,a3,...am,b线性相关,则b可由a1,a2,a3,...am唯一的线性表出!证明:设有向量组a1,a2,a3,a4,若R(a1,a2,a3,a4)>R(a1,a2,a3)则必有R(a1,a2,a3,a4
线性相关性设向量组a1,a2,a3线性无关,向量B1可由a1,a2,a3线性表示,而向量B2不能由a1,a2,a3线性表示,则对于任意常数k,必有A.a1,a2,a3,kB+B2线性无关 B.a1,a2,a3,kB+B2线性相关C.a1,a2,a3,B1+kB线性无关 D.a1,a2,a3,
线性代数证明题:设向量组a1、a2,.,a(m-1) (m大于等于3)线性相关,向量组a2,.,am线性无关,求am能由a2,…,am-1线性表示
设a:a1,a2,…a8是一个6维向量组,证明:a中至少有两个向量可以由其余向量线性表示
设向量组a1、a2、a3线性无关,向量b1能由向量组a1、a2、 a3线性表示,而向...设向量组a1、a2、a3线性无关,向量b1能由向量组a1、a2、 a3线性表示,而向量b2不能由向量组a1、a2、a3线性表示,对任意的实
设向量组A:a1,a2……am线性无关,向量b1能由向量组A线性表示,向量b2不能由向量组A线性表示.证明:m+1个向量a1,a2………am,lb1+b2必线性无关