求解曲面积分 ∫∫(S)xdydz+ydzdx+zdxdy.曲面积分 ∫∫(S)xdydz+ydzdx+zdxdy,其中S为螺旋面x=ucosv,y=usinv,z=cv(b≤u≤a,0≤v≤2π)的上侧.(提示:先化为第一型曲面积分)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 01:56:46

求解曲面积分 ∫∫(S)xdydz+ydzdx+zdxdy.曲面积分 ∫∫(S)xdydz+ydzdx+zdxdy,其中S为螺旋面x=ucosv,y=usinv,z=cv(b≤u≤a,0≤v≤2π)的上侧.(提示:先化为第一型曲面积分)
求解曲面积分 ∫∫(S)xdydz+ydzdx+zdxdy.
曲面积分 ∫∫(S)xdydz+ydzdx+zdxdy,其中S为螺旋面x=ucosv,y=usinv,z=cv(b≤u≤a,0≤v≤2π)的上侧.(提示:先化为第一型曲面积分)

求解曲面积分 ∫∫(S)xdydz+ydzdx+zdxdy.曲面积分 ∫∫(S)xdydz+ydzdx+zdxdy,其中S为螺旋面x=ucosv,y=usinv,z=cv(b≤u≤a,0≤v≤2π)的上侧.(提示:先化为第一型曲面积分)
曲面积分 ∫∫(S)xdydz+ydzdx+zdxdy,其中S为螺旋面x=ucosv,y=usinv,z=cv(b≤u≤a,0≤v≤2π)的上侧.(提示:先化为第一型曲面积分)

求解曲面积分 ∫∫(S)xdydz+ydzdx+zdxdy.曲面积分 ∫∫(S)xdydz+ydzdx+zdxdy,其中S为螺旋面x=ucosv,y=usinv,z=cv(b≤u≤a,0≤v≤2π)的上侧.(提示:先化为第一型曲面积分) 计算第二型曲面积分∫∫xdydz+ydzdx+zdxdy,其中S是曲面|x|+|y|+|z|=1的外侧. 求第二型曲面积分∫∫s xdydz+ydzdx+zdxdy,其中S是椭球面x2/a2+y2/b2+z2/c2=1外侧 计算曲面积分∫∫xdydz+zdxdy ,S是平面x+y+z=1在第一卦限部分的上侧 高斯公式求曲面积分...求∫∫(xdydz+z^2dxdy)/(x^2+y^2+z^2),∑是由曲面x^2+y^2=R^2以及两平面z=R,z=-R所围城的立体的外表面.主要求解如何将分母变为一个常数, 求曲面对坐标的积分求∫∫ xdydz + ydzdx + zdxdy,曲面为z=√3(x^2+y^2) 和z=√1-(x^2 +y^2)围成的曲面的详细解法,谢了 曲面积分∫∫xdydz+y^2dzdy+zdxdy,Σ为平面上x+y+z=1被坐标平面所截的三角形的上侧;求曲面积分 求对坐标的曲面积分,∫∫zdxdy+xdydz+ydzdx,其中∑为柱面x²+y²,详情见下求对坐标的曲面积分,∫∫zdxdy+xdydz+ydzdx,其中∑为柱面x²+y²被平面x=0及z=3所截得的在第一卦限的部分的前侧 曲面积分∫∫xdydz+z^2dxdy/(x^2+y^2+z^2),其中曲面∑是由x^2+y^2=R^2及z=R,z=-R所围成 一道利用高斯公式求解第二类曲面积分的题目被积项是(2xdydz+yzdzdx-z^2dxdy),S是由锥面z=(x^2+y^2)的二分之一次方 与半球面z=(2-x^2-y^2)的二分之一次方 所围成的区域边界曲面的外侧. 计算曲面积分I=∫∫(xdydz+ydzdx+zdxdy)/(x+y+z),其中积分曲面是2x+2y+2z=4的外侧,高数下的曲面积分,我用高斯算出来是0答案是4pi,为什么啊, 利用高斯公式计算曲面积分I=∫∫(∑)xdydz+ydzdx+zdxdy ,其中∑为半球面z=√(R^2-x^2-y^2) 的上侧 第二型曲面积分∫∫xdydz+ydzdx+zdxdy,∑:圆柱面x2+y2=z2介于z=±h之间部分的外表面(a和h均大于0) 用Gauss公式求这个积分∫∫xdydz+ydzdx+zdxdy/(x^2+y^2+z^2)^3/2,∫∫ xdydz+ydzdx+zdxdy/(x^2+y^2+z^2)^3/2,曲面为 1-z/5=[(x-2)^2]/16+[(y-1)^2]/9 (z>=0),取上侧. 高数曲面积分求解 高数曲面积分求解 高数,曲面积分求解, 数学分析关于曲面积分求解