设f(x)=1/(4^x+2),利用课本中推导等差数列前n项和的公式的方法,可求得∑f(i)(上面是6,下面是i=5)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:33:20

设f(x)=1/(4^x+2),利用课本中推导等差数列前n项和的公式的方法,可求得∑f(i)(上面是6,下面是i=5)
设f(x)=1/(4^x+2),利用课本中推导等差数列前n项和的公式的方法,可求得∑f(i)(上面是6,下面是i=5)

设f(x)=1/(4^x+2),利用课本中推导等差数列前n项和的公式的方法,可求得∑f(i)(上面是6,下面是i=5)
f(x)=1/[4^x+2]
则:f(1-x)=1/[4^(1-x)+2]=[4^x]/[4+2×4^x]
得:
f(x)+f(1-x)=1/[4^x+2]+[4^x]/[4+2×4^x]=[2+4^x]/[4+2×4^x]=1/2
则:
设:M=f(6)+f(5)+f(4)+…+f(-4)+f(-5)
则:M=f(-5)+f(-4)+…+f(5)+f(6)
两式相加,得:【倒序求和】
2M=[f(6)+f(-5)]+[f(5)+f(-4)]+…+[f(-5)+f(6)]
2M=12×(1/2)
M=3
即原式=3