求非齐次线性方程组的基础解系及其通解 X1+X2+X3+X4=2 X1+2X2+2X3+X4=4 2X1+X2+X3+4X4=β

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:52:10

求非齐次线性方程组的基础解系及其通解 X1+X2+X3+X4=2 X1+2X2+2X3+X4=4 2X1+X2+X3+4X4=β
求非齐次线性方程组的基础解系及其通解 X1+X2+X3+X4=2 X1+2X2+2X3+X4=4 2X1+X2+X3+4X4=β

求非齐次线性方程组的基础解系及其通解 X1+X2+X3+X4=2 X1+2X2+2X3+X4=4 2X1+X2+X3+4X4=β
写出增广矩阵为
1 1 1 1 2
1 2 2 1 4
2 1 1 4 β 第2行减去第1行,第3行减去第1行×2
1 1 1 1 2
0 1 1 0 2
0 -1 -1 2 β-4 第1行减去第2行,第3行加上第2行
1 0 0 1 0
0 1 1 0 2
0 0 0 2 β-2 第3行除以2,第1行减去第3行
1 0 0 0 1-β/2
0 1 1 0 2
0 0 0 1 β/2 -1
所以得到通解为c*(0,1,-1,0)^T +(1-β/2,2,0,β/2-1)^T,C为常数