已知正方形ABCD,一直角三角形的直角顶点放在正方形对角线BD上的一点E上,将此三角板绕点E旋转时,两边分A,BC于M,N.当M在AB上,点N在CB延长线上时 求证:BM-BN=根号2BE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 22:43:20
已知正方形ABCD,一直角三角形的直角顶点放在正方形对角线BD上的一点E上,将此三角板绕点E旋转时,两边分A,BC于M,N.当M在AB上,点N在CB延长线上时 求证:BM-BN=根号2BE
已知正方形ABCD,一直角三角形的直角顶点放在正方形对角线BD上的一点E上,将此三角板绕点E旋转时,两边分A
,BC于M,N.当M在AB上,点N在CB延长线上时 求证:BM-BN=根号2BE
已知正方形ABCD,一直角三角形的直角顶点放在正方形对角线BD上的一点E上,将此三角板绕点E旋转时,两边分A,BC于M,N.当M在AB上,点N在CB延长线上时 求证:BM-BN=根号2BE
证明:
过E点作BC的垂线交BC于G,则BG=EG=(√2/2)*BE
MN^2=BM^2+BN^2=ME^2+NE^2
NE^2=EG^2+NG^2
=EG^2+(BN+EG)^2
=[(√2/2)*BE]^2+[BN+(√2/2)*BE]^2
=BE^2/2+BN^2+√2*BN*BE+BE^2/2
=BE^2+BN^2+√2*BN*BE
ME^2=BE^2+BM^2-2BE*BMcos45度
=BE^2+BM^2-√2*BM*BE
ME^2+NE^2
=BE^2+BM^2-√2*BM*BE+BE^2+BN^2+√2*BN*BE
=2BE^2+BM^2+BN^2-√2*BM*BE+√2*BN*BE
=2BE^2+BM^2+BN^2-√2*BE(BM-BN)
=BM^2+BN^2
所以
2BE^2-√2*BE(BM-BN)=0
√2(BM-BN)=2BE
BM-BN=√2*BE
证毕
能把题目再描述的清晰些吗,最好能上传一个图片,我在猜那个图是什么样子的,还是有点费劲,还有一个问题是:是根号二倍的BE吗