已知正棱锥P-ABC,点P,A,B,C,都在半径为根号3的球面上,若PA、PB、PC两两互相垂直,则球心到截面ABC的距离为?【解析】因为在正三棱锥 ABC中,PA,PB,PC两两互相垂直,所以可以把该正三棱锥看作为一个
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:01:27
已知正棱锥P-ABC,点P,A,B,C,都在半径为根号3的球面上,若PA、PB、PC两两互相垂直,则球心到截面ABC的距离为?【解析】因为在正三棱锥 ABC中,PA,PB,PC两两互相垂直,所以可以把该正三棱锥看作为一个
已知正棱锥P-ABC,点P,A,B,C,都在半径为根号3的球面上,若PA、PB、PC两两互相垂直,则球心到截面ABC的
距离为?
【解析】因为在正三棱锥 ABC中,PA,PB,PC两两互相垂直,所以可以把该正三棱锥看作为一个正方体的一部分,(如图所示),此正方体内接于球,正方体的体对角线为球的直径,球心为正方体对角线的中点.
球心到截面ABC的距离为球的半径减去正三棱锥 ABC在面ABC上的
高.已知球的半径为√3 ,所以正方体的棱长为2,可求得正三棱锥 ABC在面ABC上的高为 (2√3)/3,所以球心到截面ABC的距离为 √3-(2√3)/3=√3/3
球心到截面ABC的距离为球的半径减去正三棱锥 ABC在面ABC上的高 为什么说三棱锥ABC在面ABC上的高会跟球的半径在同一直线上啊?
已知正棱锥P-ABC,点P,A,B,C,都在半径为根号3的球面上,若PA、PB、PC两两互相垂直,则球心到截面ABC的距离为?【解析】因为在正三棱锥 ABC中,PA,PB,PC两两互相垂直,所以可以把该正三棱锥看作为一个
由正三棱锥对称性,很容易证明OP垂直ABC,并且垂足为重心
已知正棱锥P-ABC,点P,A,B,C,都在半径为根号3的球面上,若PA、PB、PC两两互相垂直,则球心到截面ABC的距离为?【解析】因为在正三棱锥 ABC中,PA,PB,PC两两互相垂直,所以可以把该正三棱锥看作为一个
如图,正四棱锥P-ABCD底面的四个顶点A,B,C,D在球O的同一个大圆上,点P在球面上,且已知VP-ABCD= 163,求球的表面积 我不明白的是为什么球的半径就是正四棱锥的高?这是怎么倒出来的 我看答案,设半
正四棱锥P-ABCD底面的四个顶点A,B,C,D在球O的同一大圆上,点P在球面上,若正四棱锥的体积为16/3,求球的表面积.
正四棱锥P-ABCD底面的四个顶点A,B,C,D在球O的同一大圆上,点P在球面上,若正四棱锥的体积为3/16,求球半径
一道高中数学几何证明题题正四棱锥P-ABCD底面的四个顶点A,B,C,D,在球O的同一个大圆上,点P在球面上,且已知正四棱锥的体积为三分之十六,求球O的表面积与体积?求比较全的过程 谢谢 .
概率选择题求教.已知正棱锥S-ABC的底面边长为4,高为3,在正棱锥内任取一点p,使得p-ABC的体积
已知正三棱锥ABC-A1B1C1体积是V,点Q是侧棱CC1上的点,P是侧棱AA1上的点,且AP=C1Q,求四棱锥B-APQC的体积.
已知正三棱锥P-ABC,点P,A,B,C都在半经为根号3的球面上,若PA,PB,PC两两互相垂直 则球心到截面ABC的距离为
已知正三棱锥P-ABC,点P,A,B,C都在半经为根号3的球面上,若PA,PB,PC两两互相垂直 则球心到截面ABC的距离为
已知正三棱锥P—ABC,点P,A,B,C都在半径为根号3的球面上,若PA,PB,PC两两互相垂直,则球心到截面ABC的距离为
已知正三棱锥P-ABC,点P,A,B,C都在半径为根号3的球面上,若PA,PB,PC两两相互垂直,则球心到截面ABC的距离为
已知正三棱锥P-ABC,点P,A,B,C都在半径为3的球面上,若PA,PB,PC两两相互垂直,则球心到截面ABC的距离为
已知正三棱锥P-ABC,点P,A,B,C都在半径为根号3的球面上,若PA,PB,PC两两垂直,则球心到截面ABC的距离答案是根号3/3
没有思路,求思路和解析已知正四面体A-BCD,动点P在△ABC内,点P到平面BCD的距离与点P到A的距离相等.则点P的轨迹为_______.A.椭圆 B.双曲线的一部分 C.抛物线 D.圆能给出判断依据就行啊
P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP',已知∠AP'B=135°,P'A:P'C=1:3,则P'A:P'B=?
已知正三棱锥P-ABC,点P A B C都在半径为R的球面上,若PA,PB,PC两两互相垂直,且PA=2,则球的表面积为已知正三棱锥P-ABC,点P,A,B,C都在半径为R的球面上,若PA,PB,PC两两互相垂直,且PA=2,则球的表面积为
已知点A在直线l外,点B,C在直线l上,点P是三角形ABC内一点,求证∠P>∠A
正四棱锥P-ABCD底面的四个顶点A、B、C、D在球O的同一个大圆上,点P在球面上,如果VP-ABCD =4*2^(1/2)/3,则正四棱锥P-ABCD的内切球的表面积是4*π*(2-3^(1/2))