求不定积分∫tanx·sec^2xdx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 11:55:04

求不定积分∫tanx·sec^2xdx
求不定积分∫tanx·sec^2xdx

求不定积分∫tanx·sec^2xdx
∫tanx·sec^2xdx =∫tanxd(tanx)=(1/2)tan^2x+C

∫tanx·(secx)^2dx
=∫(sinx / cosx)(1 / cosx)^2 dx
= -∫(- sinx )/(cosx)^3 dx
= -∫(cosx)^(-3) dcosx
=(1/2)∫(-2)(cosx)^(-3) dcosx
=(1/2)(cosx)^(-2)+ C
= {1 / 【2(cosx)^2】}+ C