已知函数f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实数根,下列命题:①f[f(x)]=x也一定没有实数根;②若a<0,则必存在实数x0,使f[f(x)]>x0;③若a>0,则不等式f[f(x)]>x对一切实数x都成立
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 03:46:55
已知函数f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实数根,下列命题:①f[f(x)]=x也一定没有实数根;②若a<0,则必存在实数x0,使f[f(x)]>x0;③若a>0,则不等式f[f(x)]>x对一切实数x都成立
已知函数f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实数根,下列命题:
①f[f(x)]=x也一定没有实数根;
②若a<0,则必存在实数x0,使f[f(x)]>x0;
③若a>0,则不等式f[f(x)]>x对一切实数x都成立;
④若a+b+c=0,则不等式f[f(x)]<x对一切实数x都成立;
最好带图像的分析求解,我都看不懂这题T T
已知函数f(x)=ax2+bx+c(a≠0),且方程f(x)=x无实数根,下列命题:①f[f(x)]=x也一定没有实数根;②若a<0,则必存在实数x0,使f[f(x)]>x0;③若a>0,则不等式f[f(x)]>x对一切实数x都成立
f[f(x)]-x=af(x)^2+bf(x)+c-x
=af(x)^2-axf(x)+axf(x)-ax^2+bf(x)-bx+ax^2+bx+c-x
=af(x)[f(x)-x)]+ax[f(x)-x]+b[f(x)-x]+f(x)-x
=[f(x)-x]*[ af(x)+ax+b+1]=0
1) 因为f(x)=x没根,即delta=(b-1)^2-4ac
已知函数f(x)=ax2+bx+c(a
判断二次函数f(x)=ax2+bx+c(a
二次函数f(x)=ax2+bx+c(a
证明二次函数f(x)=ax2+bx+c(a
证明二次函数f(x)=ax2+bx+c(a
二次函数f(x)=ax2+bx+c(a>0), f(x)=ax2+bx+c(a
已知二次函数f(x)=ax2+bx+c(a≠0)有两个零点为1和2,且f(0)=2 求f(x)的...已知二次函数f(x)=ax2+bx+c(a≠0)有两个零点为1和2,且f(0)=2求f(x)的表达式
已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx是( )
已知二次函数f(x)=ax2+bx+c(a≠0),如果f(x1)=f(x2)(x1≠x2)在,则f(x1+x2)=___.
已知函数f(X)=ax2+1/bx+c(a,b,c属于Z)是奇函数,f(1)=2,f(2)
已知二次函数f(x)=ax2 bx c(a不等于零,b,c属于R)满足:对任意实数
已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a,b,c属于r且满足a>b>c,f(1)=0(1)证明:函已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a,c属于r且满足a>b>c,f(1)=0(1)证明
已知函数f(x)=ax2+bx+c若函数为奇函数,求实数a,b,c满足的条件已知函数f(x)=ax2+bx+c(1)若函数为奇函数,求实数a,b,c满足的条件;(2)若函数为偶函数,求实数a,b,c满足的条件.
(已知二次函数f(x)=ax2+bx+c.)已知二次函数f(x)=ax2+bx+c (1)若a>b>c,且f(1)=0,证明f(x)有两个零点; (2)若x1,x2∈R,x1<x2,f(x1)≠f(x2),证明方程f(x)− 1/2[f(x1)+f(x2)]=0在区间(x1,x2)内
问下关于对数学题的一个疑问已知函数f(x)=x3(立方)+ax2(平方)+3bx+c (b不等于零),且g(x)=f(x)-2是奇函数,求a,c的值g(x)=f(x)-2=x3+ax2+3bx+c-2 g(x)是奇函数 即:g(-x)=-g(x)-x3+ax2-3bx-2=-x3-ax2-3bx+2 整理:ax
已知二次函数f(x)=ax2+bx+c(a>0)满足条件f(1)=f(3),则f(1),f(2),f(4)的大小
已知函数f(x)=x3次方+ax2次方+3bx+c(b
已知函数f(x)=ax2+bx+c,且a>b>c,a+b+c=0,集合A={m|f(m)