一道初等数论题的推到已知两个正整数 a,b 互质若正整数n>=a*b那么ax+by=nx y一定存在一组正整数解换句话说 大于a*b的整数都可以用 a,b 的x y整数倍表示 求推导过程如 3 7 那么 22 可以表示
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 15:40:16
一道初等数论题的推到已知两个正整数 a,b 互质若正整数n>=a*b那么ax+by=nx y一定存在一组正整数解换句话说 大于a*b的整数都可以用 a,b 的x y整数倍表示 求推导过程如 3 7 那么 22 可以表示
一道初等数论题的推到
已知两个正整数 a,b 互质
若正整数n>=a*b
那么ax+by=n
x y一定存在一组正整数解
换句话说 大于a*b的整数都可以用 a,b 的x y整数倍表示 求推导过程
如 3 7 那么 22 可以表示为5 * 3 +1 * 7 .
一道初等数论题的推到已知两个正整数 a,b 互质若正整数n>=a*b那么ax+by=nx y一定存在一组正整数解换句话说 大于a*b的整数都可以用 a,b 的x y整数倍表示 求推导过程如 3 7 那么 22 可以表示
首先,根据条件,正整数加法乘法后还是正整数,n是一个正整数.
不妨设a>b(因为a、b互质,
n=a*x+b*y
n=a(x+(b/a)*y)
n/a=x+(b/a)*y
因为a、b互质,所以b/a是真分数;
而n>a且n>b,所以n/a必定是假分数,
令其整数部分为p,分数部分就是(n/a)-p=(n-ap)/a;(其中p为整数)
于是比较两边有:
p+(n-ap)/a=x+(b/a)*y 两边变形得:
p-m+(n-ap+am)/a=x+(by)/a; (其中0
52*38+23*26
=52*38+(23/2)*(26*2)
=52*38+11.5*52
=52*(38+11.5)
=52*39.5
=52*(40-0.5)
=52*40-52*0.5
=2080-26
=2054
首先,根据条件,正整数加法乘法后还是正整数,n是一个正整数。
不妨设a>b(因为a、b互质,不会相等)
n=a*x+b*y
n=a(x+(b/a)*y)
n/a=x+(b/a)*y
因为a、b互质,所以b/a是真分数;
而n>a且n>b,所以n/a必定是假分数,
令其整数部分为p,分数部分就是(n/a)-p=(n-ap)/a;(其中p...
全部展开
首先,根据条件,正整数加法乘法后还是正整数,n是一个正整数。
不妨设a>b(因为a、b互质,不会相等)
n=a*x+b*y
n=a(x+(b/a)*y)
n/a=x+(b/a)*y
因为a、b互质,所以b/a是真分数;
而n>a且n>b,所以n/a必定是假分数,
令其整数部分为p,分数部分就是(n/a)-p=(n-ap)/a;(其中p为整数)
于是比较两边有:
p+(n-ap)/a=x+(b/a)*y 两边变形得:
p-m+(n-ap+am)/a=x+(by)/a; (其中0<=m有:
x=p-m,且by=n-ap+am
解得:
x=p-m,且y=(n-ap+am)/b
下面就是要证存在这个m,使y为正整数,也可以说是,找到正整数对(m,y)
由by=n-ap+am 得:
m=(by+ap-n)/a,而0=
0=<(by+ap-n)/a (n-ap)/b=
n<2P)
于是n-ap<0,所以y最终的范围是(0,n/b),且y为正整数,可见:
确实存在这样的y,能使m为一在确定范围内的整数,反之,易知:
存在m,可使y=(by+ap-n)/a为整数。
收起