设a b均为锐角,且a+b=45° 求(1+tana)(1+tanb)的值急

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 01:01:49

设a b均为锐角,且a+b=45° 求(1+tana)(1+tanb)的值急
设a b均为锐角,且a+b=45° 求(1+tana)(1+tanb)的值

设a b均为锐角,且a+b=45° 求(1+tana)(1+tanb)的值急
tanb= tan(45°-a)=(tan45° -tana)/(1 + tan45°*tana)=(1-tana)/(1+tana) 1+ tanb= 2/(1+tana) 所以(1+tana)(1+tanb)=2
求采纳