设函数f(x)在区间[0,1]上二阶可导,且f(0)=0,f''(x)>0,证明:f(x)/x在(0,1]上是单调增函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 05:51:47
设函数f(x)在区间[0,1]上二阶可导,且f(0)=0,f''(x)>0,证明:f(x)/x在(0,1]上是单调增函数
设函数f(x)在区间[0,1]上二阶可导,且f(0)=0,f''(x)>0,证明:f(x)/x在(0,1]上是单调增函数
设函数f(x)在区间[0,1]上二阶可导,且f(0)=0,f''(x)>0,证明:f(x)/x在(0,1]上是单调增函数
因为 f''(x)>0
所以 f'(x)为增函数
又有f(0)=0 则f'(x)在(0,1]内单调递增 且f‘(x)>0
所以命题得证
设函数f(x)=x-xlnx.证明f(x)在区间(0,1)上是增函数.
设函数f(x)在闭区间[0,1]上可导,且f(0)×f(1)
设函数f(x)=1+x2/1-x2,用定义证明:f(x)在区间(-1,0)上是减函数
设函数f(x)在【0,1】连续,在其开区间可导,且f(0)f(1)
设函数f(x)在闭区间[0,1]上连续,且0
设函数f(x)在区间[0,1]上连续,切0
高数证明题:设函数f(x)在区间[0,1]上连续,证明
高数题求解.设函数f(x)在0到1上闭区间连续,证明
设f(x)=1+sinx,函数在区间[0,π]上的平均值у=
设函数f(x)在区间[0,1]上二阶可导,且f(0)=0,f''(x)>0,证明:f(x)/x在(0,1]上是单调增函数怎么解
设函数f(x)在区间[0,1]上二阶可导,且f(0)=0,f''(x)>0,证明:f(x)/x在(0,1]上是单调增函数
设函数f(x)在R上是偶函数,在区间(-∞,0)上递增,且f(a+1)
设函数f(x)=x^3-x^2-x+1求1f(x)的极值2f(x)在区间[0,2]上的最值
1、设函数f(x)=x的四次方-4x+5,求f(x)的单调区间,并说明它在个区间的单调性?求f(x)在区间【0,2】的最大值和最小值
设函数f(x)在区间【1,正无穷】是单调递减,f(x+1)是偶函数,判断f(1)与f(0)的大小
设函数f(x)=3ax²-2(a+c)x+c(a>c>0).函数f(x)在区间(0,1)内是否有零点?为什么?
设函数f(x)=根号x'2+1-ax,其中a>=1,证明:f(x)在区间[0,+&)上是单调递减函数
设函数f(x)=ax2+bx+c(a>0),且f(1)=-a/2 设x1x2是函数f(x)的两个零点,求证函数f(x)在区间(0,2)内至少有一个零点