关于相似矩阵的证明A1是N阶方阵,A2是M阶方阵.证明:如果A1与B1相似,A2与B2相似,则 |A1 0|与 |B1 0| 相似|0 A2| |0 B2|

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:42:55

关于相似矩阵的证明A1是N阶方阵,A2是M阶方阵.证明:如果A1与B1相似,A2与B2相似,则 |A1 0|与 |B1 0| 相似|0 A2| |0 B2|
关于相似矩阵的证明
A1是N阶方阵,A2是M阶方阵.证明:如果A1与B1相似,A2与B2相似,则
|A1 0|与 |B1 0| 相似
|0 A2| |0 B2|

关于相似矩阵的证明A1是N阶方阵,A2是M阶方阵.证明:如果A1与B1相似,A2与B2相似,则 |A1 0|与 |B1 0| 相似|0 A2| |0 B2|
A1与B1相似,所以存在 P使得 B1=P^(-1)A1P
A1与B1相似,所以存在 Q使得 B2=Q^(-1)A2Q
取R=|P 0|
|0 Q|
由于R为准对角阵,且P,Q可逆,故R也可逆,且
R^(-1)=|P^(-1) 0|
|0 Q^(-1)|
由R^(-1)|A1 0 |R=|P^(-1) 0| |A1 0 | |P 0|=|P^(-1)A1P 0|=|B1 0|
|0 A2| |0 Q^(-1)| |0 A2| |0 Q| |0 Q^(-1)A2Q| |0 B2|
知 |A1 0|与 |B1 0| 相似
|0 A2| |0 B2|

关于相似矩阵的证明A1是N阶方阵,A2是M阶方阵.证明:如果A1与B1相似,A2与B2相似,则 |A1 0|与 |B1 0| 相似|0 A2| |0 B2| 求教!】A是n阶方阵,A^2=A,证明:A相似于对角矩阵 一道关于广义逆矩阵的证明题已知矩阵A是m*n阶矩阵,而且可以写成如下的形式:A=[A1,A2]^T其中A1是n*n阶非奇异矩阵,A2是(m-n)*n阶任意矩阵.求证:表示无从下手.求指导orz 设A为n阶矩阵,a1,a2,a3是n维列向量,且a1不等于0,Aa1=a1,Aa2=a1+a2,Aa3=a2+a3.证明A和(a1,a2,a3)是一个矩阵? n阶方阵A与对角矩阵相似的充分必要条件是A有? 设a1,a2是n阶矩阵A的分别属于r1,r2的特征向量,且r1不等于r2,证明a1+a2不是A的特征向量 大学数学证明题 关于向量的1证明:设A,B都是n阶方阵,且A的行列式等于2,证明AB与BA相似2证明 如果n维单位向量e1,e2…en可以由维向量组a1,a2…an线性表示,则向量组a1,a2…an线性无关 关于矩阵的一道数学证明题证明满足A²-3A-2E=0的n阶方阵A是可逆矩阵 矩阵A与矩阵B等价,A有一个r阶子式不等于0,则矩阵B的秩?N阶方阵A具有N个不同的特征值是A与一个对角阵相似的什么条件?设A为4阶矩阵,IAI=a 则其伴随矩阵A*的行列式IA*I=?向量组a1 a2 .as s大于等于2 简单的线代证明题设A是n阶方阵,a1,a2分别是属于A的两个不同的特征值x1,x2的特征向量,证明a1+a2不是A的特征向量 n阶方阵A具有n个互不相同的特征值是A相似于对角矩阵的什么条件? 证明:与全体n阶方阵都乘法可交换的矩阵一定是数量阵. 证明实数域上的行列式为1的n阶方阵全体关于矩阵的乘法是n阶可逆矩阵全体关于矩阵乘法所成群的正规子群 设3阶方阵A属于特征值-1和1的特征向量是a1 a2 向量a3满足Aa1=a2+a3 证明a1 a2 a3设3阶方阵A属于特征值-1和1的特征向量是a1 a2 向量a3满足Aa3=a2+a3 证明a1 a2 a3 线性 设n阶方阵A的n个特征值互异,n阶方阵B与A有相同的特征值,证明:A与B是相似的? 求分块矩阵行列式的值设A=(a1,a2,a3,m),B=(a1,a2,a3,n)都是四阶方阵的列向量分块矩阵,已知|A|=1,|B|=-2,求出行列式|A+B|的值.我不明白的就是为什么把2提出来,是2^3?如果是这个呢:设A=(a1,a2,a3,m),B=(a1,2a2,3 设A是n阶方阵,若有正整数k,使得A^k=E,证明A相似于对角矩阵 设B1是n阶矩阵A属于特征值a1的特征向 量,B2,B3是A属于特征值a2的线性无关 特征向量a1不等于a2证明向量组B1,B2,B3线性无关