∫x^3/(9+x^2)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 02:49:45
∫x^3/(9+x^2)dx
∫x^3/(9+x^2)dx
∫x^3/(9+x^2)dx
∫x^3/(9+x^2)dx
=1/2∫x^2/(9+x^2)dx^2 (x^2=t)
=1/2∫t/(9+t)dt
=1/2∫(t+9-9)/(9+t)dt
=1/2∫[1-9/(9+t)]dt
=1/2t-9/2ln(9+t)+C
=1/2x^2-9/2ln(9+x^2)+C
原式=∫(x-9x/(9+x^2))dx=∫xdx-∫9x/(9+x^2)dx
=x^2/2-9ln(x^2+9)/2+C
∫x^3/9+X^2 dx.
∫3+x/(9-x^2)dx
∫x^3/(9+x^2)dx
x-9/[(根号)x]+3 dx ∫ x+1/[(根号)x] dx ∫ [(3-x^2)]^2 dx
∫2^x-3dx
求助∫d/dx[X^tan(x^2)]dx 和 ∫dx/(2+3X^2)
∫x/(4+9x^2)dx
∫dx/x(2x+3)^2
∫(2^x+3^x)²dx
∫X^2 e^-X^3 dx.
∫(x-3x+2)dx
∫x^3/1+x^2 dx
∫(x-1)^2/x^3 dx
∫dx/(x-2)平方(x-3)
∫(X^3)/(1+X^2)dx
∫x^2/x+3dx
∫x^3*e^x^2dx
∫[(x^2-x+6)/(x^3+3x)]dx