设|A|是三阶矩阵,A=(a1,a2,a3)则|A|=?A.|a1-a2,a2-a3,a3-a1| B.|a1-a2,a2-a3,a3-a1|C.|a1+2a2,a3,a1+a2| D.|a1-a3,a2+a3,a1+a2|
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 02:04:47
设|A|是三阶矩阵,A=(a1,a2,a3)则|A|=?A.|a1-a2,a2-a3,a3-a1| B.|a1-a2,a2-a3,a3-a1|C.|a1+2a2,a3,a1+a2| D.|a1-a3,a2+a3,a1+a2|
设|A|是三阶矩阵,A=(a1,a2,a3)则|A|=?A.|a1-a2,a2-a3,a3-a1| B.|a1-a2,a2-a3,a3-a1|
C.|a1+2a2,a3,a1+a2| D.|a1-a3,a2+a3,a1+a2|
设|A|是三阶矩阵,A=(a1,a2,a3)则|A|=?A.|a1-a2,a2-a3,a3-a1| B.|a1-a2,a2-a3,a3-a1|C.|a1+2a2,a3,a1+a2| D.|a1-a3,a2+a3,a1+a2|
选项 A.|a1-a2,a2-a3,a3-a1| = |a1-a2,a2-a3,a2-a1| = 0
B .|a1-a2,a2-a3,a3-a1| =.|a1-a2,a1-a3,a3-a1| = 0
选项 C .|a1+2a2,a3,a1+a2| = .|a2,a3,a1+a2| = .|a2,a3,a1| = |A|
D | a1-a3,a2+a3,a1+a2| = | a1-a3,a1+a2,a1+a2| = 0
选 C
设|A|是三阶矩阵,A=(a1,a2,a3)则|A|=?A.|a1-a2,a2-a3,a3-a1| B.|a1-a2,a2-a3,a3-a1|C.|a1+2a2,a3,a1+a2| D.|a1-a3,a2+a3,a1+a2|
设矩阵A=(a1,a2,a3)行列式A= -2求行列式a3-2a1,3a2,a1
设A是三阶矩阵,a1,a2,a3,都是三维向量,满足|a1,a2,a3|不等于0.已知Aa1=a1+a2,Aa2=-a1+2a2-a3,Aa3=a2-3a3,求|A|.
设3阶矩阵A=(a1,a2,a3),其中a1,a2,a3均为3维列向量,且|B|=2,矩阵B=(a1+a2+a3,a1+2a2,a1+3a2+a3).则|A|=?
设A是三阶矩阵,a1,a2,a3是列向量,且线性无关,Aa1=a1-a2+2a3,Aa2=a1+a2+3a3,Aa3=-a1+a2-3a3,求A的行列式
设A为n阶矩阵,a1,a2,a3是n维列向量,且a1不等于0,Aa1=a1,Aa2=a1+a2,Aa3=a2+a3.证明A和(a1,a2,a3)是一个矩阵?
设a1,a2为n维列向量,A为n阶正交矩阵,证明[Aa1,Aa2]=[a1,a2]
设a1,a2,a3均为3维列向量,记矩阵A=(a1,a2,a3)B=(a1+a2+a3,a1+2a2+2a3,a1+3a2+4a3),如果|A|=1,那么|B|=
设三维列向量a1,a2,a3线性无关,A是三阶矩阵,且有Aa1=a1+2a2+3a3,Aa2=2a2+3a3,Aa3=3a2-4a3,试求A的行列式
设三维列向量a1,a2,a3线性无关,A是三阶矩阵,且有Aa1=2a1+4a2+6a3,Aa2=4a2+6a3,Aa3=6a2-8a3 .求|A|
设三维列向量a1,a2,a3线性无关,A是三阶矩阵,且有Aa1=a1+2a2+3a3,Aa2=2a2+3a3,Aa3=3a2-4a3,试求A的行列式
设a1,a2,a3,a4是4维列向量,矩阵A=(a1,a2,a3,a4),如果|A|=2,则|-2A|=()
矩阵计算设A1=矩阵 1 0 A2=矩阵 1 -1 A=矩阵A1 00 3 1 0 0 A2则A的逆矩阵为
设a1,a2为n维列向量,A为n阶正交矩阵,证明:(1)[Aa1,Aa2]=[a1,a2] (2){Aa1}={a1}
设矩阵A=(a1,a2,a3,a4),矩阵A的秩R(A)=3,且a2=a3+a4,b=a1-a2+a3-a4,求方程Ax=b的通解
设矩阵A为3阶方阵,|A|=-2,把A按列分块A=(A1,A2,A3),其中Aj(j=1,2,3)为A的第j列,求|A1,2A2,A3|;和|A1,2,求|A1,2A2,A3|;和|A3-2A1,3A2,A1|.还有|A1,2A2,A3|的意思是什么,
设矩阵A=(a1,a2,a3,a4)的秩r(A)=3,且a1=a2+a3.设β=a1+a2+a3+a4,则线性方程组Ax=β的通解为
设|A|是三阶行列式,A=(a1,a2,a3),则|A|=?答案是|a1+2a2,a3,a1+a2| 为什么呢?