设三维列向量a1,a2,a3线性无关,A是三阶矩阵,且有Aa1=a1+2a2+3a3,Aa2=2a2+3a3,Aa3=3a2-4a3,试求A的行列式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 11:54:11

设三维列向量a1,a2,a3线性无关,A是三阶矩阵,且有Aa1=a1+2a2+3a3,Aa2=2a2+3a3,Aa3=3a2-4a3,试求A的行列式
设三维列向量a1,a2,a3线性无关,A是三阶矩阵,且有Aa1=a1+2a2+3a3,Aa2=2a2+3a3,Aa3=3a2-4a3,试求A的行列式

设三维列向量a1,a2,a3线性无关,A是三阶矩阵,且有Aa1=a1+2a2+3a3,Aa2=2a2+3a3,Aa3=3a2-4a3,试求A的行列式
由Aa1=a1+2a2+3a3,
Aa2=2a2+3a3,
Aa3=3a2-4a3可以知道,
A(a1,a2,a3)=(a1,a2,a3)(1,0,0
2,2,3
3,3,-4)
显然A,(a1,a2,a3)以及 (1,0,0 都是同阶方阵
2,2,3
3,3,-4)
所以|A|×|a1,a2,a3|=|a1,a2,a3|×|1,0,0
2,2,3
3,3,-4|
而三维列向量a1,a2,a3线性无关,所以行列式|a1,a2,a3|不等于0,可以约去
于是|A|=|1,0,0 = 2*(-4) - 3*3= -17
2,2,3
3,3,-4|
故A的行列式为 -17

Aa1=(a1 a2 a3)*(1 2 3)T
Aa2=(a1 a2 a3)*(0 2 3)T
Aa3=(a1 a2 a3)*(0 3 -4)T
(a1 a2 a3)*(1 0 0)
(2 2 3) =(Aa1,Aa2,Aa3)=A*(a1 a2 a3)
(3 3 -4)
因...

全部展开

Aa1=(a1 a2 a3)*(1 2 3)T
Aa2=(a1 a2 a3)*(0 2 3)T
Aa3=(a1 a2 a3)*(0 3 -4)T
(a1 a2 a3)*(1 0 0)
(2 2 3) =(Aa1,Aa2,Aa3)=A*(a1 a2 a3)
(3 3 -4)
因为a1 a2 a3线性无关,于是(a1 a2 a3)的秩为3,于是行列式|a1 a2 a3|不为0
所以|A|=(1 0 0)的行列式,为-17
(2 2 3)
(3 3 -4)

收起

设A为三阶矩阵,三维列向量a1,a2,a3线性无关, 已知a1、a2、a3是三维线性无关列向量,证明|a1+a2,a2+a3,a3+a1|≠0 求救! 设三维列向量a1,a2,a3线性无关,A是三阶矩阵,且有Aa1=a1+2a2+3a3,Aa2=2a2+3a3,Aa3=3a2-4a3,试求A的行列式 设三维列向量a1,a2,a3线性无关,A是三阶矩阵,且有Aa1=2a1+4a2+6a3,Aa2=4a2+6a3,Aa3=6a2-8a3 .求|A| 设三维列向量a1,a2,a3线性无关,A是三阶矩阵,且有Aa1=a1+2a2+3a3,Aa2=2a2+3a3,Aa3=3a2-4a3,试求A的行列式 设A是3阶矩阵,a1a2a3是三维线性无关的列向量,且Aa1=4a1-4a2+3a3 Aa2=负6a1-a2+a3 Aa3=0.求矩阵A特征值 设向量组a1,a2,a3,线性无关.证明:向量组a1+a2+a3,a2+a3,a3也线性无关 线性相关性设向量组a1,a2,a3线性无关,向量B1可由a1,a2,a3线性表示,而向量B2不能由a1,a2,a3线性表示,则对于任意常数k,必有A.a1,a2,a3,kB+B2线性无关 B.a1,a2,a3,kB+B2线性相关C.a1,a2,a3,B1+kB线性无关 D.a1,a2,a3, 设向量组a1,a2,a3线性无关.证明向量组a1+a3,a2+a3,a3也与线性无关. 线性相关选择题2题:设向量组a1,a2,a3,a4线性无关,则有 A a1,a3,a4线性无关 B a1,a4线性无关 C a1-a3-a4线性无关 D a1-a3-a4,a3+a4-a1线性无关 选( )如果向量组a1,a2,a3,a4的秩等于2,则有 A a1,a2线性无关 B 设A是三阶矩阵,a1,a2,a3是列向量,且线性无关,Aa1=a1-a2+2a3,Aa2=a1+a2+3a3,Aa3=-a1+a2-3a3,求A的行列式 设向量组a1.a2.a3.线性无关,则下面向量组中线性无关的是A.a1+a2,a2+a3,a3-a1 由于(a1+a2)-(a2+a3)+(a3-a1)=0所以该向量线性无关提问一:为什么他们的关系是先减后加B.a1+a2,a2+a3,a1+2a2+a3 由于(a1+a2)+(a2+3a 设a1,a2,b1,b2均为三维列向量,且a1,a2线性无关,b1,b2线性无关,证明:存在非零向量m,使得m即可由a1,a2线性表示,又可由b1,b2线性表示. 设A为三阶矩阵,三维列向量a1,a2,a3线性无关,且满足Aa1=2a1+a2+a3,Aa2=2a2,Aa3=-a2+a1(1)求B,使得A(a1,a2,a3)=(a1,a2,a3)B (2)求A的特征值(3)求可逆矩阵P和对角矩阵C,使得P^-1AP=C 设A为三阶矩阵,三维列向量a1,a2,a3线性无关,且满足Aa1=2a1+a2+a3,Aa2=2a2,Aa3=-a2+a1求可逆矩阵P和对角矩阵C,使得P^-1AP=C 设向量组a1,a2,a3线性无关,求向量组a1+a2,a2+a3,a3+a1的秩. 线性代数 设向量组a1a2 a3线性无关 证明向量组a1-a2 a2-a3 a3-a1线性相关 设n维向量a1 a2线性无关a3 a4线性无关若a1 a2都分别与a3 a4正交 证明a1 a2,a3,a4线性无关