在三角形ABC中,AD为BC边上的中线,F为AD上任意一点,直线CF交AB于E,求证AE:AB=EF:FC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:35:29

在三角形ABC中,AD为BC边上的中线,F为AD上任意一点,直线CF交AB于E,求证AE:AB=EF:FC
在三角形ABC中,AD为BC边上的中线,F为AD上任意一点,直线CF交AB于E,求证AE:AB=EF:FC

在三角形ABC中,AD为BC边上的中线,F为AD上任意一点,直线CF交AB于E,求证AE:AB=EF:FC
延长AD到点G,使AD=DG,于是四边形ABCG两对角线互相平分,则ABCG是平行四边形.
∵AB//CG
∴∠EAF=∠CGF
∵∠EFA=∠CFG
∴△AFE∽△GFC
∴AE:GC=EF:CF
∴AE:AB=EF:FC