用反证法证明关于χ的方程χ^2-5χ+m=0于2χ^2+χ+6-m=0至少有一个方程实数根.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:51:30

用反证法证明关于χ的方程χ^2-5χ+m=0于2χ^2+χ+6-m=0至少有一个方程实数根.
用反证法证明关于χ的方程χ^2-5χ+m=0于2χ^2+χ+6-m=0至少有一个方程实数根.

用反证法证明关于χ的方程χ^2-5χ+m=0于2χ^2+χ+6-m=0至少有一个方程实数根.
假设都没有实数根

χ^2-5χ+m=0
判别式
=25-4m25/4>6
2χ^2+χ+6-m=0
判别式
=1-8(6-m)