等差数列的前n项和已知等比数列{an}中,a2=2,a5=1/4,求和:a1a2+a2a3+…+anan+1.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:37:06
等差数列的前n项和已知等比数列{an}中,a2=2,a5=1/4,求和:a1a2+a2a3+…+anan+1.
等差数列的前n项和
已知等比数列{an}中,a2=2,a5=1/4,求和:a1a2+a2a3+…+anan+1.
等差数列的前n项和已知等比数列{an}中,a2=2,a5=1/4,求和:a1a2+a2a3+…+anan+1.
a5=a2q^3
1/4=2q^3
q^3=1/8
q=1/2
a2=a1q
2=a1*1/2
a1=4
an=a1q^(n-1)
=4*(1/2)^(n-1)
=(1/2)^(n-3)
an*a(n+1)=(1/2)^(n-3)*(1/2)^(n-2)
an*a(n+1)=(1/2)^(2n-5)
a1a2+a2a3+…+ana(n+1)
=(1/2)^(-3)+(1/2)^(-1)+(1/2)^1+.+(1/2)^(2n-5)
=8*[1-(1/2^2)^n]/(1-1/2^2)
=8*[1-(1/2)^2n]/(1-1/4)
=8*[1-(1/2)^2n]/(3/4)
=32*[1-(1/2)^2n]/3
=[32-(1/2)^(2n-5)]/3
a2a3/a1a2=a3/a1=q^2
a5/a2=q^3=1/8,
q=1/2,q^2=1/4,
a1=a2/q=2/(1/2)=4,
a1a2=4*2=8,
a1a2+a2a3+...+anan+1
=8[1-(1/4)^2n]/(1-1/4)
=32[1-(1/4)^2n]/3
q=1/4
b1=1/2*(a1^2)=1/2*16=8
a1a2+a2a3+…+anan+1
=b1 +q*b1+q^2*b1+...+q^(n-1)*b1
=b1(1-q^n)/(1-q)
=8(1-(1/4)^n)/(1-1/4)