平行四边形的定义、性质与判定要全的具体罗列出来
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:30:36
平行四边形的定义、性质与判定要全的具体罗列出来
平行四边形的定义、性质与判定要全的具体罗列出来
平行四边形的定义、性质与判定要全的具体罗列出来
平行四边形的定义:在同一平面内有两组对边分别平行的四边形叫做平行四边形.
平行四边形的定义、性质:
(1)平行四边形对边平行且相等.
(2)平行四边形两条对角线互相平分.(菱形和正方形)
(3)平行四边形的对角相等,两邻角互补
(4)连接任意四边形各边的中点所得图形是平行四边形.(推论)
(5)平行四边形的面积等于底和高的积.(可视为矩形)
(6)平行四边形是旋转对称图形,旋转中心是两条对角线的交点.
(7)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形.
(8)平行四边形是中心对称图形,对称中心是两对角线的交点.
(9)一般的平行四边形不是轴对称图形,菱形是轴对称图形.
(10)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和(可用余弦定理证明).
(11)平行四边形对角线把平行四边形面积分成四等分.
判定:
(1)两组对边分别相等的四边形是平行四边形;
(2)对角线互相平分的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
(4)两组对边分别平行的四边形是平行四边形;
(5)两组对角分别相等的四边形是平行四边形;
(6)一组对边平行一组对角线互相平分的四边形是平行四边形;
(7)一组对边平行一组对角相等的四边形是平行四边形;
平行四边形的定义:在同一平面内有两组对边分别平行的四边形叫做平行四边形。
平行四边形的定义、性质:
(1)平行四边形对边平行且相等。
(2)平行四边形两条对角线互相平分。(菱形和正方形)
(3)平行四边形的对角相等,两邻角互补
(4)连接任意四边形各边的中点所得图形是平行四边形。(推论)
(5)平行四边形的面积等于底和高的积。(可视为矩形)
...
全部展开
平行四边形的定义:在同一平面内有两组对边分别平行的四边形叫做平行四边形。
平行四边形的定义、性质:
(1)平行四边形对边平行且相等。
(2)平行四边形两条对角线互相平分。(菱形和正方形)
(3)平行四边形的对角相等,两邻角互补
(4)连接任意四边形各边的中点所得图形是平行四边形。(推论)
(5)平行四边形的面积等于底和高的积。(可视为矩形)
(6)平行四边形是旋转对称图形,旋转中心是两条对角线的交点。
(7)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
(8)平行四边形是中心对称图形,对称中心是两对角线的交点。
(9)一般的平行四边形不是轴对称图形,菱形是轴对称图形。
(10)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和(可用余弦定理证明)。
(11)平行四边形对角线把平行四边形面积分成四等分。
判定:
(1)两组对边分别相等的四边形是平行四边形;
(2)对角线互相平分的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
(4)两组对边分别平行的四边形是平行四边形;
(5)两组对角分别相等的四边形是平行四边形;
(6)一组对边平行一组对角线互相平分的四边形是平行四边形;
(7)一组对边平行一组对角相等的四边形是平行四边形;
收起
四七九的学习方法不一定是最好的方法,适合孩子的学习方法才是好的方法,在优优数学学校,每个孩子都能够找到适合自己的学习方法。
q5
两组对边分别平行的四边形为平行四边形
性质:对边平行且相等,对角大小相等
判定:两组对边平行(可以由角推得)