已知圆O的半径为R,若它的内接三角形ABC中,2R*(sin^2A-sin^2C)=(√2a-b)×sinB,求C的大小,△面积最大
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:43:23
已知圆O的半径为R,若它的内接三角形ABC中,2R*(sin^2A-sin^2C)=(√2a-b)×sinB,求C的大小,△面积最大
已知圆O的半径为R,若它的内接三角形ABC中,2R*(sin^2A-sin^2C)=(√2a-b)×sinB,求C的大小,△面积最大
已知圆O的半径为R,若它的内接三角形ABC中,2R*(sin^2A-sin^2C)=(√2a-b)×sinB,求C的大小,△面积最大
①
∵ 2R(sin²A-sin²C)=(√2a-b)sinB,
又∵a/sinA=2R,b/sinB=2R,c/sinC=2R,
∴原式变成 a×sinA-c×sinC=√2a×sinB-b×sinB
∴a×sinA-c×sinC+b×sinB=√2a×sinB
式子两边同乘以2R,则原式变为
a²+b²-c²=√2ab
∴c²=a²+b²-√2ab
又∵c²=a²+b²-2ab×cosC,
∴-√2ab=-2ab×cosC
∴-√2=-2×cosC
∴cosC=√2/2
∴C=45°
②
S△ABC=1/2ab×sinC
∴若求面积最大值,即为求ab最大值
在圆中最长径为直径2R,所以ab中必有一边为2R,
以圆的直径为一边的三角形是RT△,
总之,你可以解这个△了,很简单,不必在写,
最后求得面积为 R².
写这些式子累死了,第一次这么详细的写步骤,
谢分
已知圆o半径为r,求它的内接正三角形的内切圆的内接正方形的周长
已知圆O的半径为R,若它的内接三角形ABC中,2R*(sin^2A-sin^2C)=(√2a-b)×sinB,求C的大小,△面积最大
已知圆O的半径为R,它的内接三角形ABC中,2R(sin^2A-sin^2C)=[(√2)a-b]sinB成立.求三角形ABC面积S的最大值
有关高一数学必修五 解三角形 的问题1、已知△ABC的周长为√2+1,且sinA+sinB=√2sinC.求:(1)AB边的长 (2)若△ABC的面积为1/6*sinC,求∠C的度数. 2、已知圆O的半径为R,它的内接三角形ABC中,有2R
已知 如图 三角形abc是圆o的内接等边三角形 原o的半径为r 求弧bc的度数 求证 三角形abc的边长为√3r(r在根号外面)
已知⊙O的半径为R,它的内接三角形ABC满足2R(sin^2A-sin^2C)=(√2a-b),sinB,求三角形面积最大值.
已知⊙O的半径为R,在它的内接三角形ABC中,有2R(sinA的平方-sinC的平方)=(根号2a-b)sinB成立求△ABC面积S的最大值
已知三角形ABC内接于圆O,BC是圆O的直径,AD是三角形ABC的高,OE平行AC,OE交AB于E.1.求证AE=BE2.设圆O半径为R,求证AE*AC/AD=R
已知园O的半径为R,它的内接三角形△ABC中,2R(sin^2A+sin^2C)=((根号2)a-b)*sinB,求△ABC面积S的最大值
已知圆O的半径为R,求他的内接正三角形的内切圆的内接正方形面积
已知 圆O的半径为R,求它的内接正三角形,正方形及正六边形的边长之比,面积之比
已知:圆O的半径为R,求它的内接正三角形,正方形及正六边行的边长之比,与面积之比
内接三角形. 已知...三角形ABC为圆O内接三角形,BC=1 ∠A=60° 求圆O的半径. 谢谢
已知⊙O的半径为R,求它的内接正三角形的内切圆的内切正方形的周长谢谢了,
圆o的半径为1cm,三角形abc是圆o的内接三角形
已知圆O半径为5△ABC是圆O的内接 三角形且AC=4 求sinB 的值若AB=6求BC 边上的
已知圆O半径为5△ABC是圆O的内接三角形且AC=4 求sinB 的值 若AB=6求BC边上的高
三角形ABC是圆O的内接三角形,已知AB等于6角ACB等于30度,求圆O的半径