如果一个正整数能表示为两个连续偶数的平方差.那么称这个正整数的神秘数如:4=2²-0²12=4²-2²20=6²-4²因此4 12 20 这三个数都是神秘数(1)设两个连续偶数为2k+2和2k
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:24:03
如果一个正整数能表示为两个连续偶数的平方差.那么称这个正整数的神秘数如:4=2²-0²12=4²-2²20=6²-4²因此4 12 20 这三个数都是神秘数(1)设两个连续偶数为2k+2和2k
如果一个正整数能表示为两个连续偶数的平方差.那么称这个正整数的神秘数如:
4=2²-0²
12=4²-2²
20=6²-4²
因此4 12 20 这三个数都是神秘数
(1)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?
(2)两个连续奇数的平方差(取正数)是神秘数吗?为什么?
如果一个正整数能表示为两个连续偶数的平方差.那么称这个正整数的神秘数如:4=2²-0²12=4²-2²20=6²-4²因此4 12 20 这三个数都是神秘数(1)设两个连续偶数为2k+2和2k
(2k+2)²-(2k)²
=4(k+1)²-4*k²
=4[(k+1)²-k²]
=4(2k+1)
是4的倍数嘛
既然神秘数被定义为“两个连续偶数的平方差”,如果奇数也成立就需要证明对任意连续奇数的平方差与连续偶数的平方差一一对应.
(a+2)^2-a^2=4(a+1)
当a为偶数的时候,这个数字能够被4整除,但不能被8整除
当a为奇数的时候,这个数字可以被8整除
所以两个连续奇数的平方差(取正数)不是神秘数.
1、(2k+2)²-(2k)²=4k+4所以肯定是4的倍数
2、(2k+1)²-(2k-1)²=4k 也是4的倍数
(1)是,因为(2k+1)的平方-(2k)的平方=4(2k+1)
(2)是,大概因为也是4的倍数?这个不确定
1,是。(2k+2)²-(2k)²=4k+4 (其k取非负整数)所以是4的倍数
2,是。(2k+3)²-(2k+1)²=8(k+1) (其k取非负整数)所以是4的倍数
2k+1和2k+3一定时奇数,不用讨论, 果断简便些撒~
=(2k+2)^2-4k^2
=8k+4
=4(2k+1)
是4的倍数
第二题同理2k+1 和 2k+3
=(2k+3)^2-(2k+1)^2
=12k+9-4k-1
=4(2k+2)
(2k+2)^2-(2k)^2
=(2k+2-2k)(2k+2+2k)
=2(4k+2)
=4(2k+1).
代数式的系数为4,这就证明了上面第一个问题。
(k+2)^2-k^2
=(k+2-k)(k+2+k)
=2(2k+2)
=4(k+1)
代数式的系数为4,这就证明了上面第er个问题