任意六边形ABCDEF的各边中点一次为GHIJKL相对的中点连线GJ HK IL两两相交于 具体看图
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 04:12:31
任意六边形ABCDEF的各边中点一次为GHIJKL相对的中点连线GJ HK IL两两相交于 具体看图
任意六边形ABCDEF的各边中点一次为GHIJKL相对的中点连线GJ HK IL两两相交于 具体看图
任意六边形ABCDEF的各边中点一次为GHIJKL相对的中点连线GJ HK IL两两相交于 具体看图
证明:S_GHJK=S_GHJ+S_GKJ=1/2(S_GBJ+S_GCJ+S_GFJ+S_GEJ)
S_GIJL=S_GIJ+S_GLJ=1/2(S_GAJ+S_GFJ+S_GCJ+S_GDJ)=1/2(S_GBJ+S_GFJ+S_GCJ+S_GEJ)
故S_GHJK=S_GIJL 同理有S_GHJK=S_GIJL=S_HIKL
故S_QHK=((GQ-GP)/GJ ) *S_GHJK=(GQ/GJ)*S_GIJL -(GP/GJ)*S_GHJK=S_GLI -S_GKH
S_GLI=1/2(S_LAI+S_LBI)=1/4(S_LAC+S_LAD+S_LBC+S_LBD)=1/8(S_FAC+S_FAD+S_ABC+S_FBC
+S_BDA+S_BDF)
S_GKH=1/2(S_KAH+S_KBH)=1/4(S_FAH+S_EAH+S_FBH+S_EBH)=1/8(S_FAB+S_FAC+S_EAB
+S_EAC+S_FBC+S_EBC)
故S_GLI -S_GKH=1/8(S_FAD+S_ABC+S_BDA -S_FAB -S_EAB -S_EBC)+1/8(S_BDF -S_EAC)
=1/8(S_FAED -S_FED+S_ABC+S_ABCD-S_BCD -S_FAB -S_EFAB+S_EFA -S_BCDE+S_CDE)
+1/8(S_BDF-S_EAC)
=1/8(S_FADE+S_ABCD -S_FED -S_DCB -S_BAF) -1/8(S_EFAB+S_BCDE -S_ABC -S_EFA -S_CDE)
+1/8(S_BDF-S_EAC)
=1/8S_BDF -1/8S_EAC+1/8(S_BDF-S_EAC)=1/4(S_BDF-S_EAC)
即4S_QHK=S_BDF-S_EAC 同理有4S_PLI=S_BDF-S_EAC,4S_RGJ=S_BDF-S_EAC
即4S_QHK=4S_PLI=4S_RGJ=S_BDF-S_EAC
即S_QHK+S_PLI+S_RGJ=3/4(S_BDF-S_EAC)
你的问题呢?