数列an满足,a1=1/4,a2=3/4,an+1=2an-an-1(n≥2,n属于N*),数列bn满足b1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:47:01

数列an满足,a1=1/4,a2=3/4,an+1=2an-an-1(n≥2,n属于N*),数列bn满足b1
数列an满足,a1=1/4,a2=3/4,an+1=2an-an-1(n≥2,n属于N*),数列bn满足b1

数列an满足,a1=1/4,a2=3/4,an+1=2an-an-1(n≥2,n属于N*),数列bn满足b1
(1)∵a(n+1)=2an-a(n-1)
∴2an=a(n+1)+a(n-1).等差中项的性质
∴﹛an﹜是等差数列
(2)a1=1/4,a2=3/4
an=1/4+(n-1)×(3/4-1/4)=n/2-1/4
∵3bn-b(n-1)=n
∴bn=b(n-1)/3+n/3 (n≥2)
∴b(n+1)-a(n+1)=1/3bn+(n+1)/3-(n+1)/2+1/4
= 1/3bn-n/6+1/12
=1/3(bn-n/2+1/4)
=1/3(bn-an)
∴﹛bn-an﹜等比数列
(3)bn-an=(b1-1/4)(1/3)^(n-1)
∴bn=(b1-1/4)(1/3)^(n-1)+n/2-1/4
当n≥2时,bn-b(n-1)=(b1-1/4)[(1/3)^(n-1)-(1/3)^(n-2)]+1/2
=1/2-2/3(b1-1/4)(1/3)^(n-2)
∵b1<0
∴bn-b(n-1)>0
∴﹛bn﹜是单增数列
Sn=b1+b2+..+bn
∵当且仅当n=4,Sn取最小
∴b4<0,b5>0
∴(b1-1/4)(1/3)^3+4/2-1/4
=(b1-1/4)/27+7/4<0
∴b1<-47
(b1-1/4)(1/3)^4+5/2-1/4
=(b1-1/4)/81+9/4>0
∴b1>-182
∴-182<b1<-47

数列an满足,a1=1/4,a2=3/4,an+1=2an-an-1(n≥2,n属于N*),数列bn满足b1 数列{An}满足a1=1/2,a1+a2+..+an=n方an,求an 已知数列{an}满足a1=4/3,2-a(n+1)=12/an+6则1/a1+2/a2+.1/an=? 已知数列an满足a1=1,an=a1+2a2+3a3+4a4+.(n-1)a(n-1),求通项an 设数列{An}满足 A1=6,A2=4 A3=3,且数列{An+1-An}(n属于自然数)是等差数列,球An的通向公式 rt设数列{An}满足 A1=6,A2=4 A3=3,且数列{An+1-An}(n属于自然数)是等比数列,球An的通向公式rt 已知数列{an}满足2a1+2^2a2+2^3a3+...+2^nan=4^n-1,则{an}的通项公式2a1+2^2a2+2^3a3就是2a1+4a2+8a3... 设数列AN满足A1等于1,3(A1+a2+~+AN)=(n+2)an,求通向公式 已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an求an 设数列{an}满足:a1+a2/2+a3/3+a4/4……+an/n=An+B,其中A、B为常数.数列{an}是否为等差数列? 已知数列{an}满足a1=1,an=4a(n-1)/[2a(n-1)+1] (n>=2)求数列{an}的通项公式证明不等式:a1+a2+…+an>(3n-16)/2 数列{an}满足a1=1,a2=3,an+2-4an+1+4an=0数列满足A1=1,A2=3.并且An+2-4An+1+4An=0.1、证明{An+1-2An}是等比数列 数列的填空题设数列{an}满足a1=6,a2=4,a3=3,且数列{a(n+1)-an}是等差数列,则数列{an}的通项公式为? 已知数列an满足a1=1,a2=3,an+1.an-1=an,求a2013 数列{an}满足a1=3,a2=6,an+2=an+1-an,求a2013 数列{an}满足a1=3,a2=6,an+2=an+1-an,求a2008 根据下列条件,确定数列{an}的通项公式1.在数列{an}中,a(n+1)=3an^2,a1=32.在数列{an}中,a1=2,a(n+1)=4an-3n+13.在数列{an}中,a1=8,a2=2,且满足a(n+2)-4a(n+1)+3an=0 已知数列{An}满足a1=1,a2=5,an+1=5an-4an-1,(n≥2),求an 已知数列an满足an=1+2+...+n,且1/a1+1/a2+...+1/an