∫x√(ax+b)dx=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:05:01
∫x√(ax+b)dx=
∫x√(ax+b)dx=
∫x√(ax+b)dx=
∫x√(ax+b)dx
=1/a ∫x√(ax+b)d(ax+b)
=2/3a ∫xd(ax+b)^(3/2)
=2/(3a)[x(ax+b)^(3/2)-∫(ax+b)^(3/2)dx]
=2/3a*x(ax+b)^(3/2)-2/(3a^2)∫(ax+b)^(3/2)d(ax+b)
=2/(3a)*x(ax+b)^(3/2)-4/(15a^2)*(ax+b)^(5/2)+C
如有不懂科追问.
令√(ax+b)=t
x=(t^2-b)/a
dx=2t/adt
∫x√(ax+b)dx
=∫(t^2-b)/a*t*2t/adt
=2t^5/(5a^2)-2bt^3/(3a^2)+C
2
2
∫x√(ax+b)dx
=(2/3a)∫x/[(ax+b)^(3/2)]′dx
=(2/3a)∫xd[(ax+b)^(3/2)]
=(2x/3a)[(ax+b)^(3/2)]-(2/3a)∫[(ax+b)^(3/2)]dx
=(2x/3a)[(ax+b)^(3/2)]-(2/3a)(2a/5)[(ax+b)^(5/2)]+C
=(2x/3a)[(ax+b)^(3/2)]-(4/15a²)[(ax+b)^(5/2)]+C
这种无理函数的积分,解法是:
√(ax+b)=t ax+b=t^2, x=(t^2-b)/a dx=2t/a,代入:
∫x√(ax+b)dx
=∫(t^2-b)/a*t*2t/a
=(2/a^2)∫(t^4-bt^2)dt
=(2/a^2)∫(t^5/5-bt^3/3)+C
=(2/(15a^2))(√(ax+b))^3(3ax-2b)+C
∫dx/((ax+b)x)=?
∫x√(ax+b)dx=
求∫dx/(x^2√(ax+b))=- √(ax+b)/bx-(a/2b)∫dx/x√(ax+b)
∫dx/【x∧3(ax∧2+b)】=?
∫dx/x^2(ax+b)^(1/2)=
不定积分∫dx/x^2*(ax+b)=?
∫f(x)dx=F(x)+c,求∫f(ax+b)dx
积分∫[x^2/√(1-x^2)]dx=Ax^2/√(1-x^2)+B∫[1/√(1-x^2)]dx,求A、B.
求不定积分dx/[x(ax+b)]RT
不定积分dx/(x*(ax+b)^2)
几个基本积分的计算1.∫x^2/(ax^2+b)dx2.∫1/√(ax^2+b)dx3.∫√(ax^2+b)dx
x/(ax+b)dx的不定积分正推导怎么推?x^2/(ax+b)dx呢?
若∫ f(x)dx=F(x)+C,则∫ f(ax+b)dx=______.(a≠0)
∫f(x)dx=F(x)+C,求∫f(b-ax)dx=?
设∫f(x)dx=F(x)+C,则∫xf(ax^2+b)dx=?
求∫(x^2)(e^-ax)dx.
∫sin(ax+b)dx怎么算
求解∫[√(ax+b)/x^2]dx这步怎么来的,或者还有别的方法吗?