∫dx/((ax+b)x)=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 23:14:39

∫dx/((ax+b)x)=?
∫dx/((ax+b)x)=?

∫dx/((ax+b)x)=?
∫ 1/[(ax + b)x] dx
= (1/b)∫ [(ax + b) - ax]/[(ax + b)x] dx
= (1/b)∫ 1/x dx - (a/b)∫ dx/(ax + b)
= (1/b)∫ 1/x dx - (1/b)∫ d(ax + b)/(ax + b)
= (1/b)ln|x| - (1/b)ln|ax + b| + C
= (1/b)ln|x/(ax + b)| + C

1/[x(ax+b)] = k1/x + k2/(ax+b)
1= k1(ax+b)+k2x
x=0
k1= 1/b
coef. of x
k1a+k2=0
k2= -b/a

∫dx/((ax+b)x)
=(1/b)∫dx/x- (b/a)∫dx/(ax+b)
=(1/b)ln|x|-(b/a^2) ln|ax+b| + C

高数忘完了,来混经验