设n阶方阵A满足 A^2=A A不等于E 则 () A.A是满秩 B.A是零矩阵 C.A的秩小于n D.以上都不对.选哪个为啥

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:55:50

设n阶方阵A满足 A^2=A A不等于E 则 () A.A是满秩 B.A是零矩阵 C.A的秩小于n D.以上都不对.选哪个为啥
设n阶方阵A满足 A^2=A A不等于E 则 () A.A是满秩 B.A是零矩阵 C.A的秩小于n D.以上都不对.选哪个为啥

设n阶方阵A满足 A^2=A A不等于E 则 () A.A是满秩 B.A是零矩阵 C.A的秩小于n D.以上都不对.选哪个为啥
A^2-A = 0
A(A-E) = 0
所以 r(A)+r(A-E)=1
所以 r(A) < n.
故 (C) 正确.