三角形ABC中AE平分角BAC(角C大于角B),F为AE上一点,FD垂直BC于D试推导角EFD与角B 角C的数量关系
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 05:36:08
三角形ABC中AE平分角BAC(角C大于角B),F为AE上一点,FD垂直BC于D试推导角EFD与角B 角C的数量关系
三角形ABC中AE平分角BAC(角C大于角B),F为AE上一点,FD垂直BC于D试推导角EFD与角B 角C的数量关系
三角形ABC中AE平分角BAC(角C大于角B),F为AE上一点,FD垂直BC于D试推导角EFD与角B 角C的数量关系
∠EFD=90°-∠FED=90°-(∠B+1/2∠A)=90°-[∠B+1/2(180°-∠B-∠C)]=1/2∠A+2/3∠B-90°
由于角FEC=角B+0.5角BAC
=角B+0.5(180-角B-角C)
=90+0.5(角B-角C)
所以角EFD=90-角FEC
=0.5角C-0.5角B
因为FD⊥BC
所以,∠EFD=90°-∠FED
而,根据三角形的外角等于不相邻的内角之和,有:
∠FED=∠B+∠BAE
而,已知AE为∠BAC的平分线
所以,∠BAE=∠A/2
所以,∠EFD=90°-[∠B+(∠A/2)]
而,∠A+∠B+∠C=180°
所以,∠A=90°-(∠B+∠C)/2
所以,∠...
全部展开
因为FD⊥BC
所以,∠EFD=90°-∠FED
而,根据三角形的外角等于不相邻的内角之和,有:
∠FED=∠B+∠BAE
而,已知AE为∠BAC的平分线
所以,∠BAE=∠A/2
所以,∠EFD=90°-[∠B+(∠A/2)]
而,∠A+∠B+∠C=180°
所以,∠A=90°-(∠B+∠C)/2
所以,∠EFD=90°-[∠B+90°-(∠B+∠C)/2]=(∠C-∠B)/2
收起