一道考研数学题 或者直接告诉我这是哪年的数几的真题设f(X),g(x)都在[a,b]上连续,且在(a,b)内可微,又对于(a,b)内的x有g'(x)不等于0,则在(a,b)内至少存在一点&使 f'(&)/g'(&)=[f(&)-f(a)]/[g(b)-g(&)]

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:20:37

一道考研数学题 或者直接告诉我这是哪年的数几的真题设f(X),g(x)都在[a,b]上连续,且在(a,b)内可微,又对于(a,b)内的x有g'(x)不等于0,则在(a,b)内至少存在一点&使 f'(&)/g'(&)=[f(&)-f(a)]/[g(b)-g(&)]
一道考研数学题 或者直接告诉我这是哪年的数几的真题
设f(X),g(x)都在[a,b]上连续,且在(a,b)内可微,又对于(a,b)内的x有g'(x)不等于0,则在(a,b)内至少存在一点&使 f'(&)/g'(&)=[f(&)-f(a)]/[g(b)-g(&)]

一道考研数学题 或者直接告诉我这是哪年的数几的真题设f(X),g(x)都在[a,b]上连续,且在(a,b)内可微,又对于(a,b)内的x有g'(x)不等于0,则在(a,b)内至少存在一点&使 f'(&)/g'(&)=[f(&)-f(a)]/[g(b)-g(&)]
这就是柯西中值定理啊