已知点G为三角形ABC的重心 过G作直线与AB AC两边分别交与M N 两点 且向量AM=xAB AN=yAC 求1/x+1/y的值有解:若MGN三点共线则必存在实数t使得tAM+(1-t)AN=AG这是教科书上的一个例题而AM=xAB,AN=yACAG=(AB+AC)/

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 18:38:59

已知点G为三角形ABC的重心 过G作直线与AB AC两边分别交与M N 两点 且向量AM=xAB AN=yAC 求1/x+1/y的值有解:若MGN三点共线则必存在实数t使得tAM+(1-t)AN=AG这是教科书上的一个例题而AM=xAB,AN=yACAG=(AB+AC)/
已知点G为三角形ABC的重心 过G作直线与AB AC两边分别交与M N 两点 且向量AM=xAB AN=yAC 求1/x+1/y的值
有解:若MGN三点共线
则必存在实数t
使得tAM+(1-t)AN=AG
这是教科书上的一个例题
而AM=xAB,AN=yAC
AG=(AB+AC)/3
代入即得1/x+1/y=3
但我有疑问:为什么tAM+(1-t)AN=AG

已知点G为三角形ABC的重心 过G作直线与AB AC两边分别交与M N 两点 且向量AM=xAB AN=yAC 求1/x+1/y的值有解:若MGN三点共线则必存在实数t使得tAM+(1-t)AN=AG这是教科书上的一个例题而AM=xAB,AN=yACAG=(AB+AC)/
M,N,G三点共线
==>
向量NG=tNM
==>
AG-AN=t(AM-AN)
==>
AG= AN+ t(AM-AN)
==>
tAM+(1-t)AN=AG

已知点G为三角形ABC的重心 过G作直线与AB AC两边分别交与M N 两点 且向量AM=xAB AN=yAC 求1/x+1/y的值 设G为三角形ABC的重心,过点G作直线分别交AB、AC于P、Q,已知向量AP=λ向量AB,向量AQ=μ向量AC,求1/λ+1/μ 已知点G为三角形ABC的重心 过G作直线与AB AC两边分别交与M N 两点 且向量AM=xAB AN=yAC 则xy/x+y=由G为三角形的中心得到AG=1/3(AB+AC)为什么? 已知,点G是三角形ABC的重心,过G的直线EF交AB,AC于E,F,求证BE/AE+CF/AF=1 高中奥数,求大神,速解决四面体p-ABC的体积为1,G和K分别是三角形ABC和三角形PBC的重心,过G作直线分别交AB,AC于点M,N,那么四棱锥K-NMAB的体积的最大值为四面体p-ABC的体积为1,G和K分别是三角形ABC 如图所示,三角形abc的重心为g,直线l过顶点abc到l的距离分别为10、14,求重心g到l的距离 已知点G为三角形ABC的重心,过G做直线于AB、AC两边分别交于M、N两点,且向量AM=x,向量AN=y向量AC,求1/x+1/y的值 已知G为三角形ABC的重心,过点G做直线PQ与边CA,CB分别相交与P,Q,CP向量=mCA向量,CQ向量=nCB向量,求证:1/m+1/n=3 已知等边三角形的边长为2,点g是三角形abc的重心,则ag=? 已知点G为三角形ABC的重心 过G作直线与AB AC两边分别交与M N 两点 且向量AM=xAB AN=yAC 求1/x+1/y的值AG=(1/3)(a+b)=xa+t(yb-xa)=x(1-t)a+tyb什么意思啊 在三角形ABC中,G为重心,经过G作直线交AB.AC于E.F,已知AF:FC=3:2,求AE:EB. G为三角形ABC的重心,DE\BC,且DE过点G,则S三角形AEG:S四边形DECB:S三角形ABC为多少 G是三角形ABC的重心,过AG作圆与中线BF切于G点,直线CG交圆于D,求证:AG^2=CG*DG 已知,三角形ABC中,∠C=90°,G 是三角形的重心,AB=8.求:1.GC的长; 2.过点G的直线MN平行AB,求MN的长.还有第二题= =.已知,三角形ABC中,G是三角形的重心,AG⊥GC,AG=3,GC=4,求BG的长 四面体p-ABC的体积为1,G和K分别是三角形ABC和三角形PBC的重心,过G作直线分别交AB,AC于点M,N,那么四棱锥K-MNCB的体积的最大值为 点G是三角形ABC的重心,过G作直线与AB,AC两边分别交于M,N两点 ,且向量AM=x向量AB,向量AN=y向量AC,则x*点G是三角形ABC的重心,过G作直线与AB,AC两边分别交于M,N两点 ,且向量AM=x向量AB,向量AN=y向量AC,则 如图,G是三角形ABC的重心,P,Q分别在AB,AC上,已知向量AP=3/4向量AB,直线PQ过点G,设向量AQ=λ向量AC,求λ 已知点G为三角形ABC的重心 过G作直线与AB AC两边分别交与M N 两点 且向量AM=xAB AN=yAC 求1/x+1/y的值有解:若MGN三点共线则必存在实数t使得tAM+(1-t)AN=AG这是教科书上的一个例题而AM=xAB,AN=yACAG=(AB+AC)/