在三角形中,证明c2=a2+b2-2abcosc

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:19:32

在三角形中,证明c2=a2+b2-2abcosc
在三角形中,证明c2=a2+b2-2abcosc

在三角形中,证明c2=a2+b2-2abcosc
平面几何证法:
在任意△ABC中
做AD⊥BC.
∠C所对的边为c,∠B所对的边为b,∠A所对的边为a
则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
根据勾股定理可得:
AC^2=AD^2+DC^2
b^2=(sinB*c)^2+(a-cosB*c)^2
b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB
b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2
b^2=c^2+a^2-2ac*cosB
同理可得:c2=a2+b2-2abcosc