平面内两个非零向量α,β,满足丨β丨=1,且α与β-α的夹角为135°,求丨α丨取值范围α,β均为向量

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 01:35:39

平面内两个非零向量α,β,满足丨β丨=1,且α与β-α的夹角为135°,求丨α丨取值范围α,β均为向量
平面内两个非零向量α,β,满足丨β丨=1,且α与β-α的夹角为135°,求丨α丨取值范围
α,β均为向量

平面内两个非零向量α,β,满足丨β丨=1,且α与β-α的夹角为135°,求丨α丨取值范围α,β均为向量
同上一个人的分析,向量 α,β-α和β构成三角形,β对角135°,
记β-α=c,c为向量,那么有β=c+α,则有β^2=(c+α)^2=c^2+α^2+2cα*cos45
=c^2+α^2+根号2倍的cα=1
将这个式子看成是关于c的二次函数,由c有解,即有△≥0,解得α^2≤2,
又由于α>0,得0

平面内两个非零向量α,β,满足丨β丨=1,且α与β-α的夹角为135°,求丨α丨取值范围α,β均为向量 平面内两个非零向量α,β,满足丨β丨=1,且α与β-α的夹角为135°,求丨α丨取值范围需要非常具体的过程,看情况还会加分α,β均为向量 对任意两个非零的平面向量α和β,定义α.β=(α*β)/(β*β).若两个非零的平面向量a,b满足a与b的夹角θ属于(π/4,π/2),且a.b,b.a都在集合{n/2|n属于z},则a.b等于( ) 对任意两个非零向量αβ,定义α·β=α·β/β·β 若平面向量α,β满足对任意两个非零向量αβ,定义α·β=α·β/β·β若平面向量α,β满足lαl≥lβl>0,αβ的夹角在(π/4,π/2)且α※β与β※α的集合都 对任意两个非零向量αβ,定义α·β=α·β/β·β 若平面向量a,b满足对任意两个非零向量αβ,定义α·β=α·β/β·β若平面向量a,b的夹角在(π/4,π/2)且a※b与b※a的集合都在{n/2,n∈z}中,求a※b(要用 设a,b,c为同一平面内具有相同起点的任意三个非零向量,且满足a与b不共线,a⊥c,丨a丨=丨c丨,则丨b*c丨的...设a,b,c为同一平面内具有相同起点的任意三个非零向量,且满足a与b不共线,a⊥c,丨a丨=丨c 对任意两个非零的平面向量α 和 β ,定义 α ° β = α • β /β • β .若平面向量a,b满足a的绝对值大于等于b的绝对值>0,a与b的夹角θ∈(o,π/4),且向量a°b和b°a都在集合{n/2,n∈Z}中,则 α ° 对任意两个非零的平面向量α 和 β ,定义 α ° β = α • β /β • β .若平面向量a,b满足a的绝对值大于等于b的绝对值>0,a与b的夹角θ∈(o,π/4),且向量a°b和b°a都在集合{n/2,n∈Z}中,则 α ° 向量的定义新运算对任意两个非零的平面向量α和β,定义α○β=(α·β)/(β·β),若平面向量a、b满足|a|≥|b|>0,a与b的夹角θ∈(0,π/4),且a○b和b○a都在集合{n/2|n∈Z},则a○b=? 已知向量e1,向量e2是平面内两个不共线的非零向量,向量AB=2向量e1+向量e2,向量BE=向量-e1+入向量e2,向量EC=-2向量e1+向量e2,且A,E,C三点共线①求实数入的值②若向量e1=(2,1),向量e2=(2,-2)求向量BC 对任意两个非零的平面向量 对任意两个非零向量αβ,定义α※β=α·β/β·β对任意两个非零向量αβ,定义α·β=α·β/β·β若平面向量α,β满足lαl≥lβl>0,αβ的夹角在(0,π/4)且α※β与β※α的集合都在{n/2,n∈z}中,求α※β( 已知非零向量AB与AC满足(向量AB/丨向量AB丨+向量AC/丨向量AC丨)?BC=0,且 已知平面向量α,向量β(向量α≠向量0,向量β,≠向量0)满足向量β的绝对值=1,且向量α与向量(β-α)已知平面向量α,向量β(向量α≠向量0,向量β,≠向量0)满足向量│β│=1,且向量α与向量 设在同一平面内的两个非零向量a,b|a+b|=√3|a-b|,求a,b的夹角的取值范围 对任意两个非零向量αβ,定义α·β=(α·β)/(β·β)若平面向量a,b的夹角θ∈(0,π/4),则((1/|a|)·a)·((1/|b|)·b)的取值范围是题中的a、b都是向量 已知向量a,b是两个非零向量,满足向量a的模长=向量b的模长=向量a-b的模长=1,则向量b与向量a+b的夹角为? 已知α,β是平面内两个互相垂直的单位向量,若向量γ满足(α-γ)•(β-γ)=0,则|γ|的最大值为?答案是√2,为什么?