已知函数f(x)=ln(a^x-kb^x)(k>0,a>1>b>0)定义域为(0,+ 已知函数f(x)=ln(a^x-kb^x)已知函数f(x)=ln(a^x-kb^x)(k>0,a>1>b>0)定义域为(0,+无穷),是否存在这样的a、b,使得f(x)恰在(1,+无穷)上取正值,且f(3)=ln4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:19:10

已知函数f(x)=ln(a^x-kb^x)(k>0,a>1>b>0)定义域为(0,+ 已知函数f(x)=ln(a^x-kb^x)已知函数f(x)=ln(a^x-kb^x)(k>0,a>1>b>0)定义域为(0,+无穷),是否存在这样的a、b,使得f(x)恰在(1,+无穷)上取正值,且f(3)=ln4
已知函数f(x)=ln(a^x-kb^x)(k>0,a>1>b>0)定义域为(0,+ 已知函数f(x)=ln(a^x-kb^x)
已知函数f(x)=ln(a^x-kb^x)(k>0,a>1>b>0)定义域为(0,+无穷),是否存在这样的a、b,使得f(x)恰在(1,+无穷)上取正值,且f(3)=ln4

已知函数f(x)=ln(a^x-kb^x)(k>0,a>1>b>0)定义域为(0,+ 已知函数f(x)=ln(a^x-kb^x)已知函数f(x)=ln(a^x-kb^x)(k>0,a>1>b>0)定义域为(0,+无穷),是否存在这样的a、b,使得f(x)恰在(1,+无穷)上取正值,且f(3)=ln4
已知函数f(x)=ln(a^x-kb^x)(k>0,a>1>b>0)定义域为(0,+无穷),是否存在这样的a、b,使得f(x)恰在(1,+无穷)上取正值,且f(3)=ln4
x1+x2=-a
x1*x2=1/2,由此式看出x1,x2同号
(1)当a0
所以x1,x2都是正数
那么x1加上一个正数等于-a
所以x1必然小于-a
同理x20即x>-a
所以在定义域内不存在x使f'(x)=0
故f(x)无极值
(2)同理知x1,x2皆负
……
就行了