a1=5,a(n+1)=√(4+an),用数学归纳法证明an为递减数列.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:04:10
a1=5,a(n+1)=√(4+an),用数学归纳法证明an为递减数列.
a1=5,a(n+1)=√(4+an),用数学归纳法证明an为递减数列.
a1=5,a(n+1)=√(4+an),用数学归纳法证明an为递减数列.
证:
n=1时,a2=√(4+a1)=√(4+5)=√9=3
1.a1=3 且 a(n+1)=an+5ana(n+1)2.a1=1 且 a(n+1)=an+2n+13.a1=1 且 a(n+1)=an+1/4n^2-14.a1=1 an=n+1/n*a(n+1)求各题的an
设a1=5,a(n+1)=√(4+an),求该数列的极限,
1.数列{an}满足a(n+1)=an+2^n,且a1=1,求通项公式2.{an}中,a1=4,a(n=1)=5^n * an,求an
a1=5,a(n+1)=√(4+an),用数学归纳法证明an为递减数列.
a(n+1)=2an/3an+4,a1=1/4,求an
数列{an},a1=2,4a(n+1)-an=2,求通项an
数列{an}中 a1=8 4a(n+1)=an 求通项公式an
数列an,a1=4,an+1=5^n*an,求an用累乘法
a1=1/5,an+a(n+1)=6/(5^n+1),lim(a1+a2+...an )=?
a1=1/5,an+a(n+1)=6/【5^(n+1)】lim(a1+a2+...an )=?
数列{an}中,a1=1,a(n+1)=1/4an+√an+1,a7=?
已知数列{an}满足3a(n+1)=2an-4,且a1=1/5,求an
数列{an}满足:a1=2,an=[4a(n-1)]^5,求{an}的通项
在数列{an},a1=1/5,an+a(n+1)=6/5^(n+1),n∈N+,则lim(a1+a2+...+an)的值为?
数列an,a1=4,Sn+S(n+1)=5/3an+1,an数列an,a1=4,Sn+S(n+1)=5(a(n+1))/3,求an
写出下列数列{an}的前5项 a1=1,a(n+1)=an+3 a1=2,a(n+1)=2an a1=3,a2=6,a(n+2)=a(n+1)-an
1、在数列{an}中,a1=1.a(n+1)=3an+2n+1.求an.2、在数列{an}中,a1=-1,a(n+1)=(3an-4)/[(an)-1].求an.
已知数列{an}满足 n∈N 都有a(n+1)=13an-25/an+3 (1)若a1=5,求an (2)若a1=3,求an (3)a1=6 求an (4)当a1取哪些值时,无穷数列an不存在