两个大小不同的等腰直角三角形,图2是它们抽象出的几何图形,B,C,E,在同一条直线上,连结DC.是八年级的导学全程练
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:28:52
两个大小不同的等腰直角三角形,图2是它们抽象出的几何图形,B,C,E,在同一条直线上,连结DC.是八年级的导学全程练
两个大小不同的等腰直角三角形,图2是它们抽象出的几何图形,B,C,E,在同一条直线上,连结DC.
是八年级的导学全程练
两个大小不同的等腰直角三角形,图2是它们抽象出的几何图形,B,C,E,在同一条直线上,连结DC.是八年级的导学全程练
①∵△ABC,△DAE是等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=90°.
∠BAE=∠DAC=90°+∠CAE,
在△BAE和△DAC中
{AB=AC∠BAE=∠DACAD=AE
∴△BAE≌△DAC.
②由①得△BAE≌△DAC.
∴∠DCA=∠B=45°.
∵∠BCA=45°,
∴∠BCD=∠BCA+∠DCA=90°,
∴DC⊥BE.
证明:∵△ABC和△ADE都是等腰直角三角形, ∴AC=AB,AD=AE,∠BAC=∠EAD=90°, ∴∠BAC+∠CAE=∠EAD+∠CAE, 即∠BAE=∠CAD, 在△ABC和△ADE中 AC=AB ∠BAE=∠CAD AD=AE , ∴△ABE≌△ACD(SAS), (2)DC与BE的位置关系是垂直关系. 证明:∵△ABE≌△ACD, ∴BE=CD,∠B=∠ACB=∠ACD=45°, ∴∠DCB=90°, ∴DC⊥BE
图在哪里?
where is 图
(1)△BAE≌△CAD,
理由如下:
∵∠BAC=∠DAE=90°
∴∠BAE=∠DAC
又∵AB=AC
∠B=∠ADC=45°
∴△BAE≌△CAD
(2)证明:
∵△BAE≌△CAD
∴∠BEA=∠ADC
又∵∠ADE=45°
∴∠BEA+∠CDE=45°
全部展开
(1)△BAE≌△CAD,
理由如下:
∵∠BAC=∠DAE=90°
∴∠BAE=∠DAC
又∵AB=AC
∠B=∠ADC=45°
∴△BAE≌△CAD
(2)证明:
∵△BAE≌△CAD
∴∠BEA=∠ADC
又∵∠ADE=45°
∴∠BEA+∠CDE=45°
又∵∠DEA=45°
∴∠CDE+∠DEC=90°
∴∠BCD=90°
即DC⊥BE。 回答完毕
收起
(1)证明:∵△ABC和△ADE都是等腰直角三角形,
∴AC=AB,AD=AE,∠BAC=∠EAD=90°,
∴∠BAC+∠CAE=∠EAD+∠CAE,
即∠BAE=∠CAD,
∴ AC=AB ∠BAE=∠CAD AD=AE ,
∴△ABE≌△ACD(SAS),
(2)DC与BE的位置关系是垂直关系.
证明:∵△ABE≌△ACD,
全部展开
(1)证明:∵△ABC和△ADE都是等腰直角三角形,
∴AC=AB,AD=AE,∠BAC=∠EAD=90°,
∴∠BAC+∠CAE=∠EAD+∠CAE,
即∠BAE=∠CAD,
∴ AC=AB ∠BAE=∠CAD AD=AE ,
∴△ABE≌△ACD(SAS),
(2)DC与BE的位置关系是垂直关系.
证明:∵△ABE≌△ACD,
∴BE=CD,∠B=∠ACB=∠ACD=45°,
∴∠DCB=90°,
∴DC与BE的位置关系是垂直关系.
收起