快、急用 a>0且a不等于1,f(x)=a的x方-ax方分之1.求出f(x)的零点、证明f(x)的单调性、 急用、快
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 04:43:15
快、急用 a>0且a不等于1,f(x)=a的x方-ax方分之1.求出f(x)的零点、证明f(x)的单调性、 急用、快
快、急用 a>0且a不等于1,f(x)=a的x方-ax方分之1.求出f(x)的零点、证明f(x)的单调性、 急用、快
快、急用 a>0且a不等于1,f(x)=a的x方-ax方分之1.求出f(x)的零点、证明f(x)的单调性、 急用、快
1、f(x)=0,a的2x方=1,x=0
f(x)的零点是:x=0
2、(a)当a>1时,x1>x2>0,f(x1)-f(x2)=a的x1方-a的x2方+[(a的x1方-a的x2方)/a的x1+x2方]>0,则f(x)单调递增.
(b)当0<a<1时,x1>x2>0,f(x1)-f(x2)=a的x1方-a的x2方+[(a的x1方-a的x2方)/a的x1+x2方]<0,则f(x)单调递减.
56546546546
1、f(x)=0,a的2x方=1,x=0
f(x)的零点是:x=0
2、(a)当a>1时,x1>x2>0,f(x1)-f(x2)=a的x1方-a的x2方+[(a的x1方-a的x2方)/a的x1+x2方]>0,则f(x)单调递增。
(b)当0<a<1时,x1>x2>0,f(x1)-f(x2)=a的x1方-a的x2方+[(a的x1方-a的x2方)/a的x1+x2方]<0,则f(...
全部展开
1、f(x)=0,a的2x方=1,x=0
f(x)的零点是:x=0
2、(a)当a>1时,x1>x2>0,f(x1)-f(x2)=a的x1方-a的x2方+[(a的x1方-a的x2方)/a的x1+x2方]>0,则f(x)单调递增。
(b)当0<a<1时,x1>x2>0,f(x1)-f(x2)=a的x1方-a的x2方+[(a的x1方-a的x2方)/a的x1+x2方]<0,则f(x)单调递减。
收起