如图所示在正方形ABCD中,M是AB的中点,MN⊥MD,BN平分∠CBE,求证:MD=MN

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:33:29

如图所示在正方形ABCD中,M是AB的中点,MN⊥MD,BN平分∠CBE,求证:MD=MN
如图所示在正方形ABCD中,M是AB的中点,MN⊥MD,BN平分∠CBE,求证:MD=MN


如图所示在正方形ABCD中,M是AB的中点,MN⊥MD,BN平分∠CBE,求证:MD=MN
证明:取AD中点H,连接MH
则DH=1/2AD=1/2AB=MB
∠DHM=180-∠AHB=180-45=135
∠MBN=90+1/2*90=135
所以∠DHM=∠MBN
因为MN⊥MD
所以∠AMD+∠NMB=90
又因为∠AMD+∠ADM=90
所以∠ADM=∠NMB
在△DHM与△MNB中
∠DHM=∠MBN,DH=MB,∠ADM=∠NMB
所以△DHM≌△MNB
所以MD=MN

取AD中点Q,连接MQ
只要证明MQD与NBM全等即可。
角边角:QDM=BMN,
DQ=MB
DQM=MBN


细节你自己一想便知。
请问,你这图,怎么画的?为什么我在知道画不了图?

证明:取AD中点H,连接MH
则DH=1/2AD=1/2AB=MB
∠DHM=180-∠AHB=180-45=135
∠MBN=90+1/2*90=135
所以∠DHM=∠MBN
因为MN⊥MD
所以∠AMD+∠NMB=90
又因为∠AMD+∠ADM=90
所以∠ADM=∠NMB
在△DHM与△MNB中
∠DHM=∠M...

全部展开

证明:取AD中点H,连接MH
则DH=1/2AD=1/2AB=MB
∠DHM=180-∠AHB=180-45=135
∠MBN=90+1/2*90=135
所以∠DHM=∠MBN
因为MN⊥MD
所以∠AMD+∠NMB=90
又因为∠AMD+∠ADM=90
所以∠ADM=∠NMB
在△DHM与△MNB中
∠DHM=∠MBN,DH=MB,∠ADM=∠NMB
所以△DHM≌△MNB
所以MD=MN

收起

如图所示在正方形ABCD中,M是AB的中点,MN⊥MD,BN平分∠CBE,求证:MD=MN 如图所示,在正方形ABCD中,M是AB的中点,MD⊥MN,且MN平分∠CBE,求MD=MN 在正方形ABCD中,M是AB中点,图中阴影部分面积为24,正方形的边长为多少 在如图所示的几何体中,四边形ABCD为正方形,EA⊥平面ABCD,EF//AB,AB=4,AE=2,EF在如图所示的几何体中,四边形ABCD为正方形,EA⊥平面ABCD,EF//AB,AB=4,AE=2,EF=1.(1)若点M在线段AC上,且满足CM=1/4 CA,求证 如图所示,在正方形ABCD中,E、F分别为AD、DC的中点,BF、CE相交于点M.求证AM等于AB. 如图所示 在正方形ABCD中 M N分别是AB BC上的点 若BM=BN BP⊥MC于点P 求证PN⊥PD 在正方形ABCD中,M是AB的中点,MN⊥MD,BN平分∠CBE,求证:MD=MN 12、如图所示,在正方形ABCD中,M是BC上一点,连结AM,作AM的垂直平分线GH交AB于G,交CD于H,若AM=10cm,则GH=__. 如图所示正方体ABCD-A'B'C'D'中M是AB的中点则sin 在如图所示的多面体ABCDEF中,四边形ABCD是正方形,AF⊥平面.高三数学 初三数学 几何的如图所示,在正方形ABCD中,点E是AB的中点,EG⊥DE,交角CBF的平分线BG于G,DE=EG 数学向量题:在正方形ABCD中在正方形ABCD中,已知AB=2,M为BC的中点,若n为正方形内任意一点,则向量AM点积向量AN的最大值是 如图所示,在正方形ABCD中,M是CD的中点,E是CD上的一点,且∠BAE=2∠DAM,求证AE=BC+CE. 如图所示,在正方形ABCD中,M是CD的中点,E是CD上的一点,且∠BAE=2∠DAM. 求证:AE=BC+CE 如图所示,在正方形ABCD中,M是CD的中点,E是CD上的一点,且∠BAE=2∠DAM.求证:AE=BC+CE 如图所示,在正方形abcd中,P是对角线AB上的任意一点如图所示,在正方形ABCD中,P是对角线AB上的任意一点,过P作EF和GH分别平行于BC和AB,交各边于E、F、G、H,求证:E、F、G、H四点在同一圆上. 如图所示,在正方形abcd中,P是对角线AB上的任意一点如图所示,在正方形ABCD中,P是对角线AB上的任意一点,过P作EF和GH分别平行于BC和AB,交各边于E、F、G、H,求证:E、F、G、H四点在同一圆上.不能提 如图,正方形ABCD中,点P是对角线BD的中点,M,N分别在边BC,AB上,PM垂直PN 求证:四边如图,正方形ABCD中,点P是对角线BD的中点,M,N分别在边BC,AB上,PM垂直PN求证:四边形PMBN的面积等于正方形ABCD面积的四分